This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm

Journal Article
14-11-02-0018
ISSN: 2691-3747, e-ISSN: 2691-3755
Published October 28, 2021 by SAE International in United States
A Novel Fitting Method of Electrochemical Impedance Spectroscopy for
                    Lithium-Ion Batteries Based on Random Mutation Differential Evolution
                    Algorithm
Sector:
Citation: Zhang, L., Wang, X., Dai, H., and Wei, X., "A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm," SAE Int. J. Elec. Veh. 11(2):231-246, 2022, https://doi.org/10.4271/14-11-02-0018.
Language: English

References

  1. Dai , H. et al. Capacity Estimation of Lithium-Ion Batteries Based on Charging Curve Features Journal of Mechanical Engineering 55 20 2019 52 59 https://doi.org/10.3901/JME.2019.20.052
  2. Edoardo , L. et al. Design of a Wireless Charging System for Online Battery Spectroscopy Energies 14 1 2021 218 https://doi.org/10.3390/en14010218
  3. Sadeghi , E. et al. Controllable Electrochemical Impedance Spectroscopy: From Circuit Design to Control and Data Analysis IEEE Transactions on Power Electronics 35 9 2020 9933 9942 https://doi.org/10.1109/TPEL.2020.2977274
  4. Troltzsch , U. , Kanoun , O. , and Trankler , H.R. Characterizing Aging Effects of Lithium Ion Batteries by Impedance Spectroscopy Electrochimica Acta 51 2006 1664 1672 https://doi.org/10.1524/teme.2006.73.7-8.382
  5. Guha , A. and Patra , A. Online Estimation of the Electrochemical Impedance Spectrum and Remaining Useful Life of Lithium-Ion Batteries IEEE Transactions on Instrumentation and Measurement 67 8 2018 1836 1849 https://doi.org/10.1109/TIM.2018.2809138
  6. Tian , J.P. , Xiong , R. , and Yu , Q.Q. Fractional-Order Model-Based Incremental Capacity Analysis for Degradation State Recognition of Lithium-Ion Batteries IEEE Transactions on Industrial Electronics 66 2 2019 1576 1584 https://doi.org/10.1109/tie.2018.2798606
  7. Zhu , J.G. et al. A New Lithium-Ion Battery Internal Temperature On-Line Estimate Method Based on Electrochemical Impedance Spectroscopy Measurement Journal of Power Sources 274 2015 990 1004 https://doi.org/10.1016/j.jpowsour.2014.10.182
  8. Richardson , R.R. , Ireland , P.T. , and Howey , D.A. Battery Internal Temperature Estimation by Combined Impedance and Surface Temperature Measurement Journal of Power Sources 265 265 2014 254 261 https://doi.org/10.1016/j.jpowsour.2014.04.129
  9. Macdonald , D.D. Reflections on the History of Electrochemical Impedance Spectroscopy Electrochimica Acta 51 8-9 2006 1376 1388 https://doi.org/10.1016/j.electacta.2005.02.107
  10. Xueyuan , W. et al. A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management eTransportation 7 2021 100093 https://doi.org/10.1016/j.etran.2020.100093
  11. Tröltzsch , U. , Kanoun , O. , and Tränkler , H.-R. Characterizing Aging Effects of Lithium Ion Batteries by Impedance Spectroscopy Electrochimica Acta 51 8-9 2005 1664 1672 https://doi.org/10.1016/j.electacta.2005.02.148
  12. Chen , Z. 2017
  13. Rahman , M.A. , Anwar , S. , and Izadian , A. Electrochemical Model Parameter Identification of a Lithium-Ion Battery Using Particle Swarm Optimization Method Journal of Power Sources 307 2016 86 97 https://doi.org/10.1016/j.jpowsour.2015.12.083
  14. Rathmann , H. et al. Novel Methode of State-of-Charge Estimation Using In-Situ Impedance Measurement: Single Cells In-Situ Impedance Measurement Based State-of-Charge Estimation for LiFePO 4 —Li 2 TO 3 Battery Cells with a Real BMS Conference of the IEEE Industrial Electronics Society Yokohama, Japan 2015
  15. Han , S. 2019
  16. Ouyang , P. and Pano , V. Comparative Study of DE, PSO and GA for Position Domain PID Controller Tuning Algorithms 8 3 2015 697 711 https://doi.org/10.3390/a8030697
  17. Özsoy , V.S. , Ünsal , M.G. , and Örkcü , H.H. Use of the Heuristic Optimization in the Parameter Estimation of Generalized Gamma Distribution: Comparison of GA, DE, PSO and SA Methods Computational Statistics 35 4 2020 1895 1925 https://doi.org/10.1007/s00180-020-00966-4
  18. Bhattacharyya , B. and Goswami , S.K. Reactive Power Optimization through Evolutionary Techniques: A Comparative Study of the GA, DE and PSO Algorithms Intelligent Automation & Soft Computing 13 4 2007 461 470 https://doi.org/10.1080/10798587.2007.10642976
  19. Zhou , T. Optimization of Parameters in Linear Active Disturbance Rejection Control via Differential Evolution Algorithm Aero Weaponry 28 1 2021 98 103 https://doi.org/10.12132/ISSN.1673-5048.2019.0130
  20. Cho , H.-M. et al. In-Depth Investigation on Two- and Three-Electrode Impedance Measurements in Terms of the Effect of the Counter Electrode Electronic Materials Letters 5 4 2009 169 178 https://doi.org/10.3365/eml.2009.12.169
  21. Muralidharan , V.S. Warburg Impedance—Basics Revisited Anti-Corrosion Methods and Materials 44 1 1997 26 29
  22. Pauliukaite , R. et al. Electrochemical Impedance Studies of Chitosan-Modified Electrodes for Application in Electrochemical Sensors and Biosensors Electrochimica Acta 55 21 2010 6239 6247 https://doi.org/10.1016/j.electacta.2009.09.055
  23. Wang , Q.K. et al. State of Charge-Dependent Polynomial Equivalent Circuit Modeling for Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries IEEE Transactions on Power Electronics 33 10 2017 8449 8460 https://doi.org/10.1109/TPEL.2017.2780184
  24. Liao , X.-Z. et al. Low-Temperature Performance of LiFePO4/C Cathode in a Quaternary Carbonate-Based Electrolyte Electrochemistry Communications 10 5 2008 691 694 http://doi.org/10.1016/j.elecom.2008.02.017
  25. Gao , F. and Tang , Z. Kinetic Behavior of LiFePO4/C Cathode Material for Lithium-Ion Batteries Electrochimica Acta 53 15 2008 5071 5075 http://doi.org/10.1016/j.electacta.2007.10.069
  26. Ye , S.H. et al. Improvement of the High-Rate Discharge Capability of Phosphate-Doped Spinel LiMn 2 O 4 by a Hydrothermal Method Electrochimica Acta 55 8 2010 2972 2977
  27. Li , S.E. et al. An Electrochemistry-Based Impedance Model for Lithium-Ion Batteries Journal of Power Sources 258 2014 9 18 https://doi.org/10.1016/j.jpowsour.2014.02.045
  28. Paikray , H.K. , Das , P.K. , and Panda , S. Optimal Multi-robot Path Planning Using Particle Swarm Optimization Algorithm Improved by Sine and Cosine Algorithms Arabian Journal for Science and Engineering 46 4 2021 3357 3381 https://doi.org/10.1007/S13369-020-05046-9
  29. Ma , Y. Brief Description of Intelligent Optimization Algorithm Scientific and Technological Innovation 3 03 2021 123 124
  30. Miao , X. and Liu , Z. Research on Self-Adapting Differential Evolution with OBL Computer & Digital Engineering 47 12 2019 2953 2956+3120
  31. Ouyang , H. , Gao , L. , and Kong , X. Random Mutation Differential Evolution Algorithm Journal of Northeastern University (Natural Science) 34 03 2013 330 334
  32. Hsieh , C.-T. et al. Electrochemical Performance of Lithium Iron Phosphate Cathodes at Various Temperatures Electrochimica Acta 115 2014 96 102 https://doi.org/10.1016/j.electacta.2013.10.082
  33. Kasbawati et al. 2015
  34. Shi , Y. A Modified Particle Swarm Optimizer Proceedings of the IEEE ICEC Conference Anchorage, AK 1998
  35. Zhu , H. , Hao , Z. , and Wang , F. The Calculation Method of Binary Genetic Algorithm Code Length Journal of Liaoning University of Technology (Natural Science Edition) 36 02 2016 138 140
  36. Dollé , M. et al. In Situ TEM Study of the Interface Carbon/Electrolyte Journal of Power Sources 97-98 2001 104 106 https://doi.org/10.1016/S0378-7753(01)00507-9
  37. Huang , C. et al. The Effect of Solid ELECTROLYTE Interface Formation Conditions on the Aging Performance of Li-Ion Cells Journal of Solid State Electrochemistry 15 9 2011 1987 1995 https://doi.org/10.1007/s10008-010-1219-1
  38. Lee , S.B. and Pyun , S.I. The Effect of Electrolyte Temperature on the Passivity of Solid Electrolyte Interphase Formed on a Graphite Electrode Carbon 40 13 2002 2333 2339
  39. Hao , S. et al. Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions Energies 14 2 2021 350 https://doi.org/10.3390/EN14020350
  40. Jiangong , Z. et al. Investigation of Lithium-Ion Battery Degradation Mechanisms by Combining Differential Voltage Analysis and Alternating Current Impedance Journal of Power Sources 448 C 2020 227575 https://doi.org/10.1016/j.jpowsour.2019.227575
  41. Wang , X. et al. A Novel System for Measuring Alternating Current Impedance Spectra of Series-Connected Lithium-ion Batteries with a High-Power Dual Active Bridge Converter and Distributed Sampling Units IEEE Transactions on Industrial Electronics 68 8 2020 7380 7390 https://doi.org/10.1109/TIE.2020.3001841
  42. Wei , X. , Wang , X. , and Dai , H. Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling Energies 11 1 2018 64
  43. Wang , X. , Zhang , J. , Wei , X. , and Dai , H. Battery Impedance Measurement with Step Current of Different Amplitude under Temperature and State of Charge Control SAE Technical Paper 2018-01-0443 2018 https://doi.org/10.4271/2018-01-0443
  44. Wang , X. , Wei , X. , and Dai , H. Estimation of State of Health of Lithium-Ion Batteries Based on Charge Transfer Resistance Considering Different Temperature and State of Charge Journal of Energy Storage 21 2019 618 631 https://doi.org/10.1016/j.est.2018.11.020
  45. Yuan , H.F. and Dung , L.R. Off-Line State-of-Health Estimation for High Power Lithium-Ion Batteries Using Three-Point Impedance Extraction Method IEEE Transactions on Vehicular Technology 66 3 2017 2019 2032
  46. Stroe , D.I. et al. Diagnosis of Lithium-Ion Batteries State-of-Health Based on Electrochemical Impedance Spectroscopy Technique 2014 IEEE Energy Conversion Congress and Exposition (ECCE) Pittsburgh, PA 2014 https://doi.org/10.1109/ECCE.2014.6954027
  47. Pastor-Fernández , C. et al. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems Journal of Power Sources 360 2017 301 318 https://doi.org/10.1016/j.jpowsour.2017.03.042

Cited By