This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Isothermal Temperature Control for Battery Testing and Battery Model Parameterization

Journal Article
14-10-02-0008
ISSN: 2691-3747, e-ISSN: 2691-3755
Published April 27, 2021 by SAE International in United States
Isothermal Temperature Control for Battery Testing and Battery Model
                    Parameterization
Sector:
Citation: Hales, A., Brouillet, E., Wang, Z., Edwards, B. et al., "Isothermal Temperature Control for Battery Testing and Battery Model Parameterization," SAE Int. J. Elec. Veh. 10(2):105-122, 2021, https://doi.org/10.4271/14-10-02-0008.
Language: English

References

  1. Transparency Market Research 2019 https://www.transparencymarketresearch.com/lithium-ion-battery-market.html
  2. International Energy Agency 2019 https://iea.blob.core.windows.net/assets/1f6bf453-3317-4799-ae7b-9cc6429c81d8/English-WEO-2019-ES.pdf
  3. Zubi , G. , Dufo-López , R. , Carvalho , M. , and Pasaoglu , G. The Lithium-Ion Battery: State of the Art and Future Perspectives Renew. Sustain. Energy Rev. 89 2018 292 308 10.1016/j.rser.2018.03.002
  4. Lieven , T. Policy Measures to Promote Electric Mobility—A Global Perspective Transp. Res. Part A Policy Pract. 82 2015 78 93 10.1016/J.TRA.2015.09.008
  5. Langbroek , J.H.M. , Franklin , J.P. , and Susilo , Y.O. The Effect of Policy Incentives on Electric Vehicle Adoption Energy Policy 94 2016 94 103 10.1016/J.ENPOL.2016.03.050
  6. Contestabile , M. , Alajaji , M. , and Almubarak , B. Will Current Electric Vehicle Policy Lead to Cost-Effective Electrification of Passenger Car Transport? Energy Policy 110 2017 20 30 10.1016/J.ENPOL.2017.07.062
  7. Fotouhi , A. , Auger , D.J. , Propp , K. , Longo , S. et al. A Review on Electric Vehicle Battery Modelling: From Lithium-Ion toward Lithium-Sulphur Renew. Sustain. Energy Rev. 56 2016 1008 1021 10.1016/J.RSER.2015.12.009
  8. Mousavi G , S.M. , and Nikdel , M. Various Battery Models for Various Simulation Studies and Applications Renew. Sustain. Energy Rev. 32 2014 477 485 10.1016/J.RSER.2014.01.048
  9. Zhang , X. , Zhang , W. , and Lei , G. A Review of Li-Ion Battery Equivalent Circuit Models Trans. Electr. Electron. Mater. 17 6 2016 311 316 10.4313/TEEM.2016.17.6.311
  10. Haussmann , P. , and Melbert , J. Internal Cell Temperature Measurement and Thermal Modeling of Lithium Ion Cells for Automotive Applications by Means of Electrochemical Impedance Spectroscopy SAE Int. J. Altern. Powertrains 6 2 2017 261 270 https://doi.org/10.4271/2017-01-1215
  11. Pesaran , A.A. Battery Thermal Models for Hybrid Vehicle Simulations J. Power Sources 110 2 2002 377 382 10.1016/S0378-7753(02)00200-8
  12. Ardani , M.I. , Patel , Y. , Siddiq , A. , Offer , G.J. et al. Combined Experimental and Numerical Evaluation of the Differences between Convective and Conductive Thermal Control on the Performance of a Lithium Ion Cell Energy 144 2018 81 97 10.1016/j.energy.2017.12.032
  13. Troxler , Y. et al. The Effect of Thermal Gradients on the Performance of Lithium-Ion Batteries J. Power Sources 247 2014 1018 1025 10.1016/j.jpowsour.2013.06.084
  14. Xie , Y. , Shi , S. , Tang , J. , Wu , H. et al. Experimental and Analytical Study on Heat Generation Characteristics of a Lithium-Ion Power Battery Int. J. Heat Mass Transf. 122 2018 884 894 10.1016/j.ijheatmasstransfer.2018.02.038
  15. Wu , B. , Yufit , V. , Marinescu , M. , Offer , G.J. et al. Coupled Thermal-Electrochemical Modelling of Uneven Heat Generation in Lithium-Ion Battery Packs J. Power Sources 243 2013 544 554 10.1016/j.jpowsour.2013.05.164
  16. Zhao , Y. , Patel , Y. , Zhang , T. , and Offer , G.J. Modeling the Effects of Thermal Gradients Induced by Tab and Surface Cooling on Lithium Ion Cell Performance J. Electrochem. Soc. 165 13 2018 A3169 A3178 10.1149/2.0901813jes
  17. Rizk , R. , Louahlia , H. , Gualous , H. , and Schaetzel , P. Experimental Analysis and Transient Thermal Modelling of a High Capacity Prismatic Lithium-Ion Battery Int. Commun. Heat Mass Transf. 94 2018 115 125 10.1016/J.ICHEATMASSTRANSFER.2018.03.018
  18. Gu , W.B. , and Wang , C.Y. Thermal-Electrochemical Modeling of Battery Systems J. Electrochem. Soc. 147 8 2000 2910 2923
  19. Bandhauer , T.M. , Garimella , S. , and Fuller , T.F. Temperature-Dependent Electrochemical Heat Generation in a Commercial Lithium-Ion Battery J. Power Sources 247 2014 618 628 10.1016/j.jpowsour.2013.08.015
  20. Offer , G.J. , Yufit , V. , Howey , D.A. , Wu , B. et al. Module Design and Fault Diagnosis in Electric Vehicle Batteries J. Power Sources 206 2012 383 392 10.1016/J.JPOWSOUR.2012.01.087
  21. Mazyar , S. and Moghaddam , H. 2019
  22. Jossen , A. , Spath , V. , Doring , H. , and Garche , J. Battery Management Systems (BMS) for Increasing Battery Life Time 21st International Telecommunications Energy Conference. INTELEC ’99 Copenhagen, Denmark 1999 56 10.1109/INTLEC.1999.794018.
  23. Chaturvedi , N.A. , Klein , R. , Christensen , J. , Ahmed , J. et al. Algorithms for Advanced Battery-Management Systems IEEE Control Syst. Mag. 30 3 2010 49 68 10.1109/MCS.2010.936293.
  24. Schleich , B. , Anwer , N. , Mathieu , L. , and Wartzack , S. Shaping the Digital Twin for Design and Production Engineering CIRP Ann. 66 1 2017 141 144 10.1016/J.CIRP.2017.04.040
  25. Du , S. et al. An Investigation of Irreversible Heat Generation in Lithium Ion Batteries Based on a Thermo-Electrochemical Coupling Method Appl. Therm. Eng. 121 2017 501 510 10.1016/j.applthermaleng.2017.04.077
  26. Ahmed , R. et al. Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications SAE Int. J. Altern. Powertrains 4 2 2015 233 247 https://doi.org/10.4271/2015-01-0252
  27. Cordoba-Arenas , A. , Onori , S. , and Rizzoni , G. A Control-Oriented Lithium-Ion Battery Pack Model for Plug-In Hybrid Electric Vehicle Cycle-Life Studies and System Design with Consideration of Health Management J. Power Sources 279 2015 791 808 10.1016/J.JPOWSOUR.2014.12.048
  28. Taylor , J. , Barai , A. , Ashwin , T.R. , Guo , Y. et al. An Insight into the Errors and Uncertainty of the Lithium-Ion Battery Characterisation Experiments J. Energy Storage 24 2019 100761 https://doi.org/10.1016/j.est.2019.100761
  29. Ecker , M. , Tran , T.K.D. , Dechent , P. , Kabitz , S. et al. Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery: I. Determination of Parameters J. Electrochem. Soc. 162 9 2015 A1836 A1848 10.1149/2.0551509jes
  30. Ecker , M. , Käbitz , S. , Laresgoiti , I. , and Sauer , D.U. Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery J. Electrochem. Soc. 162 9 2015 A1849 A1857 10.1149/2.0541509jes
  31. Zhao , Y. , Diaz , L.B. , and Offer , G.J. How to Cool Lithium Ion Batteries : Optimising Cell Design Using a Thermally Coupled Model J. Electrochem. Soc. 166 13 2019 2849 2859 10.1149/2.0501913jes
  32. Li , A. , Pelissier , S. , Venet , P. , and Gyan , P. Fast Characterization Method for Modeling Battery Relaxation Voltage Batteries 2 2 2016 7 10.3390/batteries2020007
  33. Bernardi , D. A General Energy Balance for Battery Systems J. Electrochem. Soc. 132 1 1985 5 10.1149/1.2113792
  34. Thomas , K.E. , and Newman , J. Heats of Mixing and of Entropy in Porous Insertion Electrodes J. Power Sources 119-121 2003 844 849 10.1016/S0378-7753(03)00283-0
  35. European Automobile Manufacturers Association 2017 https://www.wltpfacts.eu/what-is-wltp-how-will-it-work/
  36. Khan , M. , Swierczynski , M. , and Kær , S. Towards an Ultimate Battery Thermal Management System: A Review Batteries 3 4 2017 9 10.3390/batteries3010009
  37. Lin , C. et al. Comparative Study on the Heat Generation Behavior of Lithium-Ion Batteries with Different Cathode Materials Using Accelerating Rate Calorimetry Energy Procedia 142 2017 3369 3374 10.1016/j.egypro.2017.12.472
  38. Lin , C. , Xu , S. , and Liu , J. Measurement of Heat Generation in a 40 Ah LiFePO4prismatic Battery Using Accelerating Rate Calorimetry Int. J. Hydrogen Energy 43 17 2018 8375 8384 10.1016/j.ijhydene.2018.03.057
  39. Hales , A. , Marzook , M.W. , Bravo Diaz , L. , Patel , Y. et al. The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium Ion Battery Pouch Cells J. Electrochem. Soc. 167 2 2020 020524 10.1149/1945-7111/ab6985
  40. Dondelewski , O. et al. The Role of Cell Geometry When Selecting Tab or Surface Cooling to Minimise Cell Degradation eTransportation 5 2020 https://www.sciencedirect.com/science/article/pii/S2590116820300308
  41. Li , D. , and Yang , L. Identification of Spatial Temperature Gradient in Large Format Lithium Battery Using a Multilayer Thermal Model Int. J. Energy Res. 44 1 2020 282 297 10.1002/er.4914
  42. Dai , H. , Jiang , B. , and Wei , X. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient Energies 11 1 2018 220 10.3390/en11010220
  43. Waldmann , T. et al. Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An In Operando Study J. Electrochem. Soc. 162 6 2015 A921 A927 10.1149/2.0561506jes
  44. BINDER 2020
  45. Vehicle Certification Agency https://www.vehicle-certification-agency.gov.uk/fcb/wltp.asp
  46. Kıyaklı , A.O. , and Solmaz , H. Modeling of an Electric Vehicle with MATLAB/Simulink Int. J. Automot. Sci. Technol. 2 4 2019 9 15 10.30939/ijastech..475477
  47. Auger , D.J. 2020 https://www.mathworks.com/matlabcentral/fileexchange/46777-driving-cycle-simulink-block
  48. Guzzella , L. , and Sciarretta , A. Vehicle Propulsion Systems: Introduction to Modeling and Optimization Berlin Springer 2007

Cited By