This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Developing Fuel Cell Electric Powertrain Architectures for Commercial Vehicles

Journal Article
13-04-01-0004
ISSN: 2640-642X, e-ISSN: 2640-6438
Published December 07, 2022 by SAE International in United States
Developing Fuel Cell Electric Powertrain Architectures for Commercial
                    Vehicles
Citation: Sujan, V., "Developing Fuel Cell Electric Powertrain Architectures for Commercial Vehicles," SAE J. STEEP 4(1):73-111, 2023, https://doi.org/10.4271/13-04-01-0004.
Language: English

Abstract:

This article addresses the architecture development for a commercial vehicle fuel cell electric powertrain by establishing a clear multi-step formalized workflow that employs a unique technoeconomic solution for architecture selection. The power capability of the fuel cell, the energy capacity and chemistry of the electrical energy storage (battery), the DC-DC converter (including the input current rating and isolation resistance requirements), the traction drive solution, the on-board hydrogen storage solution, and the real-time power-split management of the fuel cell and the battery are all considered and developed in this effort. The methods were used to select architecture for Class 8 urban, regional, and line haul applications. When compared to traditional load-following power-split controllers, an energy management power-split controller can increase system energy efficiency by up to 19.5%. The energy-efficient power-split controller may increase the required battery capacity for an equivalent life by up to 2.6 times. The impact on the total cost of ownership (TCO) for a variety of financial cases demonstrates that high C-rate capable batteries have the potential to provide better TCO solutions over a six-year vehicle life than low C-rate capable batteries. To achieve TCO parity with the 600 A non-isolated DC-DC converter case, the specific choice of the fuel cell DC-DC converter to achieve a target power output based on current levels (from 500 A to 2400 A) shows that efficiency decreases and cost increases due to the higher current, requiring fuel cell prices to decrease by $50–$100/kW, $60–$110/kW, and $100–$220/kW for urban, regional, and line haul applications, respectively. Key recommendations for powertrain system architectures are provided, with specifics based on vehicle dynamics, mission and application characteristics, end customer use-case profile, critical powertrain component costs, and architecture selection cost function. This study rigorously demonstrates the interplay of the above parameters, with a focus on TCO, and provides application decision-makers with a mechanism and well-defined set of impact factors to consider as part of their architecture selection process.