This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Cell Electric Vehicles: A Platinum and Other Raw Material Perspective Based on Vehicle Design and Technology Data

Journal Article
13-03-01-0002
ISSN: 2640-642X, e-ISSN: 2640-6438
Published September 27, 2021 by SAE International in United States
Fuel Cell Electric Vehicles: A Platinum and Other Raw Material
                    Perspective Based on Vehicle Design and Technology Data
Sector:
Citation: Mas-Peiro, J., Neidhardt, M., Schmuelling, B., Pou, J. et al., "Fuel Cell Electric Vehicles: A Platinum and Other Raw Material Perspective Based on Vehicle Design and Technology Data," SAE J. STEEP 3(1):19-29, 2022, https://doi.org/10.4271/13-03-01-0002.
Language: English

References

  1. Hardman , S. , Steinberger-Wilckens , R. , and van der Horst , D. Disruptive Innovations: The Case for Hydrogen Fuel Cells and Battery Electric Vehicles International Journal of Hydrogen Energy 38 35 2013 15438 15451 https://doi.org/10.1016/j.ijhydene.2013.09.088
  2. Ingvarsson , A.F. , Pestiaux , J. , and Vanek , F.M. A Global Assessment of Hydrogen for Future Automotive Transportation: Projected Energy Requirements and CO 2 Emissions International Journal of Sustainable Transportation 5 2 2011 71 90 https://doi.org/10.1080/15568310903511884
  3. Pollet , B.G. , Kocha , S.S. , and Staffell , I. Current Status of Automotive Fuel Cells for Sustainable Transport Current Opinion in Electrochemistry 16 2019 90 95 https://doi.org/10.1016/j.coelec.2019.04.021
  4. Yue , M. , Jemei , S. , Gouriveau , R. , and Zerhouni , N. Review on Health-Conscious Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles: Degradation Models and Strategies International Journal of Hydrogen Energy 44 13 2019 6844 6861 https://doi.org/10.1016/j.ijhydene.2019.01.190
  5. Smaragdakis , A. , Kamenopoulos , S. , and Tsoutsos , T. How Risky Is the Introduction of Fuel Cell Electric Vehicles in a Mediterranean Town? International Journal of Hydrogen Energy 45 35 2020 18075 18088 https://doi.org/10.1016/j.ijhydene.2020.04.224
  6. Apostolou , D. and Xydis , G. A Literature Review on Hydrogen Refuelling Stations and Infrastructure. Current Status and Future Prospects Renewable and Sustainable Energy Reviews 113 2019 109292 https://doi.org/10.1016/j.rser.2019.109292
  7. Ajanovic , A. and Haas , R. Prospects and Impediments for Hydrogen and Fuel Cell Vehicles in the Transport Sector International Journal of Hydrogen Energy 46 2021 10049 10058 https://doi.org/10.1016/j.ijhydene.2020.03.122
  8. Kolbe , K. , Lechtenböhmer , S. , and Fischedick , M. Hydrogen Derived from Algae and Cyanobacteria as a Decentralized Fueling Option for Hydrogen Powered Cars: Size, Space, and Cost Characteristics of Potential Bioreactors International Journal of Sustainable Transportation 14 5 2020 325 334 https://doi.org/10.1080/15568318.2018.1547935
  9. Sealy , C. The Problem with Platinum Materials Today 11 12 2008 65 68 https://doi.org/10.1016/S1369-7021(08)70254-2
  10. Spiegel , R.J. Platinum and Fuel Cells Transportation Research Part D: Transport and Environment 9 5 2004 357 371 https://doi.org/10.1016/j.trd.2004.07.001
  11. Grandell , L. , Lehtilä , A. , Kivinen , M. , Koljonen , T. et al. Role of Critical Metals in the Future Markets of Clean Energy Technologies Renewable Energy 95 2016 53 62 https://doi.org/10.1016/j.renene.2016.03.102
  12. Zientek , M.L. , Loferski , P.J. , Parks , H.L. , Schulte , R.F. et al. 2017 https://doi.org/10.3133/pp1802N
  13. Bloomberg New Energy Finance 2019 https://www.eenews.net/assets/2019/05/15/document_ew_02.pdf
  14. Sverdrup , H.U. and Ragnarsdottir , K.V. A System Dynamics Model for Platinum Group Metal Supply, Market Price, Depletion of Extractable Amounts, Ore Grade, Recycling and Stocks-in-Use Resources, Conservation and Recycling 114 2016 130 152 https://doi.org/10.1016/j.resconrec.2016.07.011
  15. Elektroautomobil 2020 https://www.elektroautomobil.com/newsbeitrag/das-beste-aber-was-ist-das/
  16. Onstad , E. 2019 https://www.reuters.com/article/us-platinum-week-bosch-fuelcells-exclusi-idUSKCN1SJ0FG
  17. Daimler AG 2020 https://www.daimler.com/products/passenger-cars/mercedes-benz/glc-f-cell.html
  18. Gaikwad , S.D. and Ghosh , P.C. Sizing of a Fuel Cell Electric Vehicle: A Pinch Analysis-Based Approach International Journal of Hydrogen Energy 45 15 2020 8985 8993 https://doi.org/10.1016/j.ijhydene.2020.01.116
  19. Ding , Y. , Cano , Z.P. , Yu , A. , Lu , J. et al. 2019 https://www.osti.gov/pages/biblio/1561559 https://theicct.org/sites/default/files/publications/Hydrogen-infrastructure-status-update_ICCT-briefing_04102017_vF.pdf
  20. Gourley , S.W.D. , Or , T. , and Chen , Z. Breaking Free from Cobalt Reliance in Lithium-Ion Batteries iScience 23 9 2020 101505 https://doi.org/10.1016/j.isci.2020.101505
  21. Editorial Reuters 2018
  22. Editorial Reuters 2020 https://www.reuters.com/article/us-catl-batteries/chinas-catl-is-developing-new-ev-battery-with-no-nickel-cobalt-exec-says-idUSKCN25B0BA
  23. Månberger , A. and Stenqvist , B. Global Metal Flows in the Renewable Energy Transition: Exploring the Effects of Substitutes, Technological Mix and Development Energy Policy 119 2018 226 241 https://doi.org/10.1016/j.enpol.2018.04.056
  24. Tokimatsu , K. , Wachtmeister , H. , McLellan , B. , Davidsson , S. et al. Energy Modeling Approach to the Global Energy-Mineral Nexus: A First Look at Metal Requirements and the 2°C Target Applied Energy 207 2017 494 509
  25. Watari , T. , McLellan , B. , Ogata , S. , and Tezuka , T. Analysis of Potential for Critical Metal Resource Constraints in the International Energy Agency’s Long-Term Low-Carbon Energy Scenarios Minerals 8 4 2018 156 https://doi.org/10.3390/min8040156
  26. Harding Robin Japan’s Hydrogen Dream: Game-Changer or a Lot of Hot Air?: The Country Needs to Build the Infrastructure for Its Emission-Reduction Solution Financial Times 2019 https://www.ft.com/content/c586475e-7260-11e9-bf5c-6eeb837566c5
  27. Grünweg , T. 2013 https://www.spiegel.de/auto/aktuell/warum-lange-entwicklungszyklen-fuer-autohersteller-zum-problem-werden-a-881990.html
  28. IEA 2021 https://www.iea.org/data-and-statistics/charts/passenger-car-sales-in-the-stated-policies-scenario-2016-2040
  29. Boele , G. 2020 https://insights.abnamro.nl/en/2017/11/precious-metals-watch-electric-vehicles-to-result-in-large-platinum-and-palladium-price-declines/
  30. Rasmussen , K.D. , Wenzel , H. , Bangs , C. , Petavratzi , E. et al. Platinum Demand and Potential Bottlenecks in the Global Green Transition: A Dynamic Material Flow Analysis Environmental Science & Technology 53 19 2019 11541 11551 https://doi.org/10.1021/acs.est.9b01912
  31. Sun , Y. , Delucchi , M. , and Ogden , J. The Impact of Widespread Deployment of Fuel Cell Vehicles on Platinum Demand and Price International Journal of Hydrogen Energy 36 17 2011 11116 11127 https://doi.org/10.1016/j.ijhydene.2011.05.157
  32. Cowley , A. 2020 http://www.platinum.matthey.com/documents/new-item/pgm%20market%20reports/pgm_market_report_february_2020.pdf
  33. Cobalt Institute 2020 https://www.cobaltinstitute.org/
  34. Nickel Institute 2020 https://www.nickelinstitute.org/about-nickel
  35. Latham , E. , Kilbey , B. , and Ehtaiba , A. 2020 https://www.spglobal.com/en/research-insights/articles/lithium-supply-is-set-to-triple-by-2025-will-it-be-enough
  36. Hagelüken , B.C. Recycling the Platinum Group Metals: A European Perspective Platinum Metals Review 56 1 2012 29 35 https://doi.org/10.1595/147106712X611733
  37. PwC South Africa 2020 https://www.pwc.co.za/en/press-room/platinum-supply-unlikely-to-meet-demand.html
  38. Genc , B. and Jerome , J. Challenges in the South African Platinum Sector Mine Planning and Equipment Selection: Proceedings of the 22nd MPES Conference Drebenstedt , C. 113 Cham Springer International Publishing 2013 1361 1368
  39. Njini , F. South African Mining Revival Threatened by Power Cuts Bloomberg 2019 https://www.bloomberg.com/news/articles/2019-12-11/south-african-mining-revival-threatened-as-power-cuts-take-toll
  40. Alonso , E. , Field , F.R. , and Kirchain , R.E. Platinum Availability for Future Automotive Technologies Environmental Science & Technology 46 23 2012 12986 12993 https://doi.org/10.1021/es301110e
  41. Harvey , L.D. Resource Implications of Alternative Strategies for Achieving Zero Greenhouse Gas Emissions from Light-Duty Vehicles by 2060 Applied Energy 212 2018 663 679 https://doi.org/10.1016/j.apenergy.2017.11.074
  42. Marscheider-Weidemann , F. , Langkau , S. , Hummen , T. , Erdmann , L. et al. Rohstoffe für Zukunftstechnologien 2016: Auftragsstudie 2016th Berlin Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) 2016
  43. Olivetti , E.A. , Ceder , G. , Gaustad , G.G. , and Fu , X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals Joule 1 2 2017 229 243 https://doi.org/10.1016/j.joule.2017.08.019
  44. Watari , T. , Nansai , K. , and Nakajima , K. Major Metals Demand, Supply, and Environmental Impacts to 2100: A Critical Review Resources, Conservation and Recycling 164 2021 105107 https://doi.org/10.1016/j.resconrec.2020.105107
  45. McKinsey&Company 2017 https://www.mckinsey.com/~/media/McKinsey/Industries/Metals%20and%20Mining/Our%20Insights/The%20future%20of%20nickel%20A%20class%20act/The%20future%20of%20nickel%20A%20class%20act.pdf
  46. Ziemann , S. , Müller , D.B. , Schebek , L. , and Weil , M. Modeling the Potential Impact of Lithium Recycling from EV Batteries on Lithium Demand: A Dynamic MFA Approach Resources, Conservation and Recycling 133 2018 76 85 https://doi.org/10.1016/j.resconrec.2018.01.031

Cited By