This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 1: Fuel Reactivity and Injection Strategy Effects

Journal Article
13-02-01-0003
ISSN: 2640-642X, e-ISSN: 2640-6438
Published March 10, 2021 by SAE International in United States
Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 1: Fuel Reactivity and Injection Strategy Effects
Sector:
Citation: Cho, K., Zhang, Y., and Sellnau, M., "Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 1: Fuel Reactivity and Injection Strategy Effects," SAE J. STEEP 2(1):41-58, 2021, https://doi.org/10.4271/13-02-01-0003.
Language: English

References

  1. Stanglmaiger , R. and Roberts , C. Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications SAE Technical Paper 1999-01-3682 1999 https://doi.org/10.4271/1999-01-3682
  2. Zhao , F. , Assanis , D. , Asmus , T. , Dec , J. et al. Homogeneous Charge Compression Ignition (HCCI) Engines, Key Research and Development Issues Warrendale Society of Automotive Engineers 2003 978-0-7680-1123-4
  3. Dec , J. , Yang , Y. , and Dronniou , N. Boosted HCCI-Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline SAE Technical Paper 2011-01-0897 2011 https://doi.org/10.4271/2011-01-0897
  4. Yun , H. , Wermuth , N. , and Najt , P. High Load HCCI Operation Using Different Valving Strategy in a Naturally-Aspirated Gasoline HCCI Engine SAE Technical Paper 2011-01-0899 2011 https://doi.org/10.4271/2011-01-0899
  5. Noehre , C. , Andersson , M. , Johansson , B. , and Hultqvist , A. Characterization of Partially Premixed Combustion SAE Technical Paper 2006-01-3412 2007 https://doi.org/10.4271/2006-01-3412
  6. Nevin , R.M. , Sun , Y. , Gonzalez D , M.A. , and Reitz , R.D. PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine SAE Technical Paper 2007-01-0903 2007 https://doi.org/10.4271/2007-01-0903
  7. Cho , K. , Han , M. , Wagner , R. , and Sluder , C. Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine SAE Int. J. Engines 1 1 457 465 2009 https://doi.org/10.4271/2008-01-0645
  8. Cho , K. , Han , M. , Sluder , C. , and Wagner , R. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine SAE Technical Paper 2009-01-2669 2009 https://doi.org/10.4271/2009-01-2669
  9. De Ojeda , W. , Zoldak , P. , Espinosa , R. , and Kumar , R. Development of a Fuel Injection Strategy for Partially Premixed Compression Ignition SAE Paper 2009-01-1527 2009 https://doi.org/10.4271/2009-01-1527
  10. Inagaki , K. , Mizuta , J. , Fuyuto , T. , Hashizume , T. et al. Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows SAE Paper 2011-01-1393 2011 https://doi.org/10.4271/2011-01-1393
  11. Kokjohn , S. , Hanson , R. , Splitter , D. , and Reitz , R. Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion International Journal of Engine Research 12 3 209 226 2011 https://doi.org/10.1177/1468087411401548
  12. Prikhodko , V. , Curran , S. , Barone , T. , Lewis , S. et al. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending SAE Int. J. Fuels Lubr. 3 2 946 955 2010 https://doi.org/10.4271/2010-01-2266
  13. Splitter , D. , Wissink , M. , Kokjohn , S. , and Reitz , R. Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency SAE Technical Paper 2012-01-0383 2012 https://doi.org/10.4271/2012-01-0383
  14. Hanson , R. , Curran , S. , Wagner , R. , Kokjohn , S. et al. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine SAE Technical Paper 2012-01-0380 2012 https://doi.org/10.4271/2012-01-0380
  15. Depsey , A. , Walker , N. , and Reitz , R. Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel SAE Int. J. Engines 6 1 78 100 2013 https://doi.org/10.4271/2013-01-0264
  16. Roberts , J. , Kokjohn , S. , Hou , D. , and Huang , Y. Performance of Gasoline Compression Ignition (GCI) with On-Demand Reactivity Enhancement over Simulated Drive Cycles SAE Technical Paper 2018-01-0255 2018 https://doi.org/10.4271/2018-01-0255
  17. Kalghatgi , G. , Risberg , P. , and Ångström , H. Partially Pre-Mixed Auto-ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel SAE Technical Paper 2007-01-0006 2007 https://doi.org/10.4271/2007-01-0006
  18. Kalghatgi , G. , Hildingsson , L. , and Johansson , B. Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels J. Eng. Gas Turbines Power 132 9 259 271 2010 https://doi.org/10.1115/1.4000602
  19. Ra , Y. , Loeper , P. , Reitz , R. , Andrie , M. et al. Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime SAE Int. J. Engines 4 1 1412 1430 2011 https://doi.org/10.4271/2011-01-1182
  20. Ciatti , S. , Johnson , M. , Das Adhikary , B. , Reitz , R. et al. Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels SAE Technical Paper 2013-01-0263 2013 https://doi.org/10.4271/2013-01-0263
  21. Wealls , A. and Collings , N. Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of SAE Technical Paper 2007-01-4058 2007 https://doi.org/10.4271/2007-01-4058
  22. Sellnau , M. , Sinnamon , J. , Hoyer , K. , and Husted , H. Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions SAE Int. J. Engines 4 1 2010 2022 2011 https://doi.org/10.4271/2011-01-1386
  23. Cho , K. , Latimer , E. , Lorey , M. , Cleary , D. et al. Gasoline Fuels Assessment for Delphi’s Second Generation Gasoline Direct-injection Compression Ignition (GDCI) Multi-Cylinder Engine SAE Int. J. Engines 10 4 1430 1442 2017 https://doi.org/10.4271/2017-01-0743
  24. Dec , J. , Dernotte , J. , and Ji , C. Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines SAE Int. J. Engines 10 3 1256 1274 2017 https://doi.org/10.4271/2017-01-0731
  25. Dempsey , A. , Curran , S. , and Wagner , R. A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions: Effects of In-Cylinder Fuel Stratification International Journal of Engine Research 17 8 897 917 2016 https://doi.org/10.1177/1468087415621805
  26. Kolodziej , C. , Kodavasa , J. , Ciatti , S. , Som , S. et al. Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle SAE Technical Paper 2015-01-0832 2013 https://doi.org/10.4271/2015-01-0832
  27. Borgqvist , P. , Tunestal , P. , and Johansson , B. Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions SAE Technical Paper 2013-01-0902 2013 https://doi.org/10.4271/2013-01-0902
  28. Manente , V. , Johansson , B. , and Tunestal , P. Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel SAE Technical Paper 2009-01-0944 2009 https://doi.org/10.4271/2009-01-0944
  29. Manente , V. , Zander , C. , Johansson , B. , Tunestal , P. et al. An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion SAE Technical Paper 2010-01-2198 2010 https://doi.org/10.4271/2010-01-2198
  30. Chang , J. , Kalghatgi , G. , Amer , A. , and Viollet , Y. Enabling High Efficiency Direct Injection Engine with Naphtha Fuel through Partially Premixed Charge Compression Ignition Combustion SAE Technical Paper 2012-01-0677 2012 https://doi.org/10.4271/2012-01-0677
  31. Chang , J. , Kalghatgi , G. , Amer , A. , Adomeit , P. et al. Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission SAE Int. J. Engines 6 1 101 119 2013 https://doi.org/10.4271/2013-01-0267
  32. Leermakers , C. , Bakker , P. , Somers , L. , De Goey , L. et al. Commercial Naphtha Blends for Partially Premixed Combustion SAE Int. J. Fuels Lubr. 6 1 199 216 2013 https://doi.org/10.4271/2013-01-1681
  33. Rose , K. , Cracknell , R. , Rickeard , D. , Ariztegui , J. et al. Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle SAE Technical Paper 2010-01-0334 2010 https://doi.org/10.4271/2010-01-0334
  34. Cung , K. and Ciatti , S. A Study of Injection Strategy to Achieve High Load Points for Gasoline Compression Ignition (GCI) Operation 2017 American Society of Mechanical Engineers (ASME) Internal Combustion Engine Division Fall Conference 2017 https://doi.org/10.1115/ICEF2017-3625
  35. Sellnau , M. , Foster , M. , Hoyer , K. , Moore , W. et al. Development of a Gasoline Direction Injection Compression Ignition SAE Int. J. Engines 7 2 835 851 2014 https://doi.org/10.4271/2014-01-1300
  36. Sellnau , M. , Moore , W. , Sinnamon , J. , Hoyer , K. et al. GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions SAE Int. J. Engines 8 2 775 790 2015 https://doi.org/10.4271/2015-01-0834
  37. Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions SAE Int. J. Engines 9 2 1002 1020 2016 https://doi.org/10.4271/2016-01-0760
  38. Sellnau , M. , Hoyer , K. , Moore , W. , Foster , M. et al. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions SAE Technical Paper 2018-01-0901 2018 https://doi.org/10.4271/2018-01-0901
  39. Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition SAE Technical Paper 2019-01-1154 2019 https://doi.org/10.4271/2019-01-1154
  40. Kolodziej , C. , Sellnau , M. , Cho , K. , and Cleary , D. Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels SAE Int. J. Engines 9 2 979 1001 2016 https://doi.org/10.4271/2016-01-0759
  41. Paz , J. , Staaden , D. , and Kokjohn , S. Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load SAE Technical Paper 2018-01-0898 2018 https://doi.org/10.4271/2018-01-0898
  42. Zhang , Y. , Pei , Y. , Engineer , N. , Cho , K. et al. CFD-Guided Combustion Strategy Development for a Higher Reactivity Gasoline in a Light-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2017-01-0740 2017 https://doi.org/10.4271/2017-01-0740
  43. Zhang , Y. , Kumar , P. , Pei , Y. , Traver , M. et al. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 https://doi.org/10.4271/2018-01-0226
  44. Cho , K. , Zhao , L. , Ameen , M. , Zhang , Y. et al. Investigation of Fuel Effects on Combustion Characteristics of Partially Premixed Compression Ignition (PPCI) Combustion Mode at Part-Load Operations SAE Technical Paper 2018-01-0897 2018 https://doi.org/10.4271/2018-01-0897
  45. Richards , K.J. , Senecal , P.K. , and Pomraning , E. 2017
  46. Reitz , R. and Diwakar , R. Structure of High-Pressure Fuel Sprays SAE Technical Paper 870598 1987 https://doi.org/10.4271/870598
  47. Reitz , R.D. Modeling Atomization Processes in High Pressure Vaporizing Sprays Atomization and Spray Tech. 3 309 337 1987
  48. Patterson , M. and Reitz , R. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission SAE Technical Paper 980131 1998 https://doi.org/10.4271/980131
  49. Schmidt , D.P. and Rutland , C.J. A New Droplet Collision Algorithm J. Comp. Phys. 164 62 80 2000 https://doi.org/10.1006/jcph.2000.6568
  50. Frossling , N. 1956
  51. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models Combust. Sci. and Tech. 106 267 295 1995 https://doi.org/10.1080/00102209508907782
  52. Liu , Y. , Jia , M. , Xie , M. , and Pang , B. Enhancement on a Skeletal Kinetics Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy & Fuels 26 2012 https://doi.org/10.1021/ef301242b
  53. Yang , J. , Golovitchev , V. , Redon , P. , and Javier Lopez Sanchez , J. Numerical Analysis of NOx Formation Trends in Biodiesel Combustion using Dynamic ϕ-T Parametric Maps SAE Technical Paper 2011-01-1929 2011 https://doi.org/10.4271/2011-01-1929
  54. Cho , K. , Zhao , L. , Ameen , M. , Zhang , Y. et al. Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors SAE Technical Paper 2019-01-1145 2019 https://doi.org/10.4271/2019-01-1145
  55. Naber , J. and Siebers , D. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays SAE Technical Paper 960034 2018 https://doi.org/10.4271/960034
  56. U.S. EPA 2018 https://www.epa.gov/vehicle-and-fuel-emissions-testing/benchmarking-advanced-low-emission-light-duty-vehicle-technology

Cited By