This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Eco-Profiling of Bio-Epoxies via Life Cycle Assessment

Journal Article
13-01-01-0003
ISSN: 2640-642X, e-ISSN: 2640-6438
Published March 25, 2020 by SAE International in United States
Eco-Profiling of Bio-Epoxies via Life Cycle Assessment
Sector:
Citation: Kousaalya, A., Iyer, R., and Pilla, S., "Eco-Profiling of Bio-Epoxies via Life Cycle Assessment," SAE J. STEEP 1(1):39-57, 2020, https://doi.org/10.4271/13-01-01-0003.
Language: English

References

  1. La Rosa, A.D., Banatao, D.R., Pastine, S.J., Latteri, A., and Cicala, G. , “Recycling Treatment of Carbon Fibre/Epoxy Composites: Materials Recovery and Characterization and Environmental Impacts through Life Cycle Assessment,” Composites Part B: Engineering 104:17-25, 2016, https://doi.org/10.1016/j.compositesb.2016.08.015.
  2. ERC , “Epoxy Resins in Automotive: Assessment of Potential BPA Emissions,” Brussels, https://epoxy-europe.eu/wp-content/uploads/2015/07/Epoxy_ERC_BPA_WhitePapers_Automotive.pdf, 2015.
  3. Braun, T., Becker, K.-F., Koch, M., Bader, V. et al. , “Reliability Potential of Epoxy Based Encapsulants for Automotive Applications,” Microelectronics Reliability 45(9-11):1672-1675, 2005, https://doi.org/10.1016/j.microrel.2005.07.075.
  4. Suay, J.J., Rodriguez, M.T., Razzaq, K.A., Carpio, J.J., and Saura, J.J. , “The Evaluation of Anticorrosive Automotive Epoxy Coatings by Means of Electrochemical Impedance Spectroscopy,” Progress in Organic Coatings 46(2):121-129, 2003, https://doi.org/10.1016/S0300-9440(02)00219-9.
  5. Abu Talib, A.R., Ali, A., Badie, M.A., Azida Che Lah, N., and Golestaneh, A.F. , “Developing a Hybrid, Carbon/Glass Fiber-Reinforced, Epoxy Composite Automotive Drive Shaft,” Mater. Des. 31(1):514–521, 2010, https://doi.org/10.1016/j.matdes.2009.06.015.
  6. Jin, F.-L., Li, X., and Park, S.-J. , “Synthesis and Application of Epoxy Resins: A Review,” Journal of Industrial and Engineering Chemistry 29:1-11, 2015, https://doi.org/10.1016/j.jiec.2015.03.026.
  7. Gannon, J.A. , “History and Development of Epoxy Resins,” In: Seymour, R.B., Kirshenbaum, G.S., eds., High Performance Polymers: Their Origin and Development. (Dordrecht, Springer Netherlands, 1986), 299-307, https://doi.org/10.1007/978-94-011-7073-4_29.
  8. Kousaalya, A.B., Beyene, S.D., Gopal, V., Ayalew, B., and Pilla, S. , “Green Epoxy Synthesized from Perilla Frutescens: A Study on Epoxidation and Oxirane Cleavage Kinetics of High-Linolenic Oil,” Industrial Crops and Products 123:25-34, 2018, https://doi.org/10.1016/J.INDCROP.2018.06.047.
  9. Kousaalya, A.B., Pilla, S., Beyene, S.D., Ayalew, B., and Pilla, S. , “Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin,” Scientific Reports 9(1):8987, 2019, https://doi.org/10.1038/s41598-019-45458-8.
  10. Kishi, H., Fujita, A., Miyazaki, H., Matsuda, S., and Murakami, A. , “Synthesis of Wood-Based Epoxy Resins and Their Mechanical and Adhesive Properties,” Journal of Applied Polymer Sciences 102(3):2285-2292, 2006, https://doi.org/10.1002/app.24433.
  11. Pan, H. , “Synthesis of Polymers from Organic Solvent Liquefied Biomass: A Review,” Renewable and Sustainable Energy Reviews 15(7):3454-3463, 2011, https://doi.org/10.1016/j.rser.2011.05.002.
  12. Kumar, S., Samal, S.K., Mohanty, S., and Nayak, S.K. , “Recent Development of Biobased Epoxy Resins: A Review,” Polymer Plastics Technology and Engineering 57(3):133-155, 2018, https://doi.org/10.1080/03602559.2016.1253742.
  13. Auvergne, R., Caillol, S., David, G., Boutevin, B., and Pascault, J.-P. , “Biobased Thermosetting Epoxy: Present and Future,” Chemical Review 114(2):1082-1115, 2014, https://doi.org/10.1021/cr3001274.
  14. Kuo, P.-Y., Sain, M., and Yan, N. , “Synthesis and Characterization of an Extractive-Based Bio-Epoxy Resin from Beetle Infested Pinus contorta Bark,” Green Chemistry 16(7):3483, 2014, https://doi.org/10.1039/c4gc00459k.
  15. Nikafshar, S., Zabihi, O., Hamidi, S., Moradi, Y. et al. , “A Renewable Bio-Based Epoxy Resin with Improved Mechanical Performance that Can Compete with DGEBA,” RSC Advance 7(14):8694-8701, 2017, https://doi.org/10.1039/C6RA27283E.
  16. Kim, J.R. and Sharma, S. , “The Development and Comparison of Bio-Thermoset Plastics from Epoxidized Plant Oils,” Industrial Crops and Products 36(1):485-499, 2012, https://doi.org/10.1016/j.indcrop.2011.10.036.
  17. Galià, M., de Espinosa, L.M., Ronda, J.C., Lligadas, G., and Cádiz, V. , “Vegetable Oil-Based Thermosetting Polymers,” European Journal of Lipid Science and Technology 112(1):87-96, 2010, https://doi.org/10.1002/ejlt.200900096.
  18. Tabone, M.D., Cregg, J.J., Beckman, E.J., and Landis, A.E. , “Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers,” Environmental Science and Technology 44(21):8264-8269, 2010, https://doi.org/10.1021/es101640n.
  19. Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F. et al. , “Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change,” Science 319(5867):1238-1240, 2008, https://doi.org/10.1126/science.1151861.
  20. ISO , “ISO 14040:2006 - Environmental management - Life cycle assessment - Principles and Framework,” International Organization for Standardization, Geneva, https://www.iso.org/standard/37456.html, 2006.
  21. ISO , “ISO 14044:2006 - Environmental management - Life cycle assessment - Requirements and guidelines,” International Organization for Standardization, Geneva, https://www.iso.org/standard/38498.html, 2006.
  22. Ng, F., Couture, G., Philippe, C., Boutevin, B. et al. , “Bio-Based Aromatic Epoxy Monomers for Thermoset Materials,” Molecules 22(1):149, 2017, https://doi.org/10.3390/molecules22010149.
  23. Fache, M., Viola, A., Auvergne, R., Boutevin, B., and Caillol, S. , “Biobased Epoxy Thermosets from Vanillin-Derived Oligomers,” European Polymer Journal 68:526-535, 2015, https://doi.org/10.1016/j.eurpolymj.2015.03.048.
  24. Culbertson, C., Treasure, T., Venditti, R., Jameel, H., and Gonzalez, R. , “Life Cycle Assessment of Lignin Extraction in a Softwood Kraft Pulp Mill,” Nordic Pulp and Paper Research Journal 31(01):030-040, 2016, https://doi.org/10.3183/NPPRJ-2016-31-01-p030-040.
  25. Fache, M., Darroman, E., Besse, V., Auvergne, R. et al. , “Vanillin, a Promising Biobased Building-Block for Monomer Synthesis,” Green Chemistry 16(4):1987, 2014, https://doi.org/10.1039/c3gc42613k.
  26. Huijbregts, M.A.J., Steinmann, Z.J.N., Eishout, P.M.F., Stam, G. et al. , “ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level - Report 1: Characterization,” Nat. Inst. Pub. Heath & Environ., Bilthoven, 2016.
  27. Günkaya, Z., Özdemir, A., Özkan, A., and Banar, M. , “Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey,” Sustainability 8(11):1097, 2016, https://doi.org/10.3390/su8111097.
  28. Falk, H.L., Jurgelski, W. et al. , “Health Effects of Coal Mining and Combustion: Carcinogens and Cofactors,” Environ. Health Perspect. 33:203–226, 1979, https://doi.org/10.1289/ehp.7933203.
  29. Atilgan, B. and Azapagic, A. , “Life Cycle Environmental Impacts of Electricity from Fossil Fuels in Turkey,” Journal of Cleaner Products 106:555-564, 2015, https://doi.org/10.1016/J.JCLEPRO.2014.07.046.
  30. Molinaire, J.C. , Sustainability Analysis of Copper Extraction and Processing Using LCA Methods (London, UK: Imperial College London, 2015).
  31. Ayres, R.U., Ayres, L.W., and Råde, I. , The Life Cycle of Copper, its Co-Products and By-Products (Fontainebleau: International Institute for Environment and Development (IIED) and World Business Council for Sustainable Development (WBCSD), 2002).
  32. Classen, M., Althaus, H.-J., Blaser, S., Tuchschmid, M., Jungbluth, N., Doka, G., Faist Emmenegger, M., and Scharnhorst, W. , “Life Cycle Inventories of Metals,” Final report Ecoinvent data v2.1, No 10, EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, 2009, www.ecoinvent.ch.
  33. Althaus, H.-J. and Classen, M. , “Life Cycle Inventories of Metals and Methodological Aspects of Inventorying Material Resources in Ecoinvent (7 pp),” International Journal of Life Cycle Assessment 10(1):43-49, 2005, https://doi.org/10.1065/lca2004.11.181.5.
  34. Beylot, A. and Villeneuve, J. , “Accounting for the Environmental Impacts of Sulfidic Tailings Storage in the Life Cycle Assessment of Copper Production: A Case Study,” Journal of Cleaner Products 153:139-145, 2017, https://doi.org/10.1016/J.JCLEPRO.2017.03.129.
  35. Kossoff, D., Dubbin, W.E., Alfredsson, M., Edwards, S.J. et al. , “Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation,” Applied Geochemistry 51:229-245, 2014, https://doi.org/10.1016/J.APGEOCHEM.2014.09.010.
  36. Fthenakis, V. and Kim, H.C. , “Life-Cycle Uses of Water in U.S. Electricity Generation,” Renewable and Sustainable Energy Reviews 14(7):2039-2048, 2010, https://doi.org/10.1016/J.RSER.2010.03.008.
  37. Inhaber, H. , “Water Use in Renewable and Conventional Electricity Production,” Energy Sources 26(3):309-322, 2004, https://doi.org/10.1080/00908310490266698.
  38. Llevot, A. et al. , “Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers,” Chem. - A Eur. J. 22:11510-11521, 2016.
  39. Seyler, C., Capello, C., Hellweg, S., Bruder, C., Bayne, D., Huwiler, A., and Hungerbühler, K. , “Waste-Solvent Management as an Element of Green Chemistry: A Comprehensive Study on the Swiss Chemical Industry,” Ind. Eng. Chem. Res. 45(22):7700–7709, 2006, https://doi:10.1021/ie060525l.
  40. Kuo, P.-Y., Sain, M., and Yan, N. , “Synthesis and Characterization of an Extractive-Based Bio-Epoxy Resin from Beetle Infested Pinus contorta Bark,” Green Chem. 16, https://doi.org/10./c4gc9k.
  41. Culbertson, C., Treasure, T., Venditti, R., Jameel, H. et al. , “Life Cycle Assessment of Lignin Extraction in a Softwood Kraft Pulp Mill,” Nord. Pulp Pap. Res. J. 31:030-040, https://doi.org/10./NPPRJ--31-01-p030-040.
  42. Fache, M., Darroman, E., Besse, V., Auvergne, R. et al. , “Vanillin, a Promising Biobased Building-Block for Monomer Synthesis,” Green Chem. 16, https://doi.org/10./c3gc3k.
  43. Fache, M., Viola, A., Auvergne, R., Boutevin, B. et al. , “Biobased Epoxy Thermosets from Vanillin-Derived Oligomers,” Eur. Polym. J. 68:526-535, https://doi.org/10./j.eurpolymj..03.048.
  44. Jin, E. , “Life-Cycle Assessment of Two Catalysts Used in the Biofuel Syngas Cleaning Process and Analysis of Variability in Gasification,” China Agricultural University, Beijing.

Cited By