This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Co-Simulation Platform for Modeling and Evaluating Connected and Automated Vehicles and Human Behavior in Mixed Traffic

Journal Article
12-05-04-0025
ISSN: 2574-0741, e-ISSN: 2574-075X
Published April 21, 2022 by SAE International in United States
Co-Simulation Platform for Modeling and Evaluating Connected and
                    Automated Vehicles and Human Behavior in Mixed Traffic
Sector:
Citation: Zhao, X., Liao, X., Wang, Z., Wu, G. et al., "Co-Simulation Platform for Modeling and Evaluating Connected and Automated Vehicles and Human Behavior in Mixed Traffic," SAE Intl. J CAV 5(4):313-326, 2022, https://doi.org/10.4271/12-05-04-0025.
Language: English

References

  1. Toledo , T. , Koutsopoulos , H.N. , and Ben-Akiva , M. Estimation of an Integrated Driving Behavior Model Transportation Research Part C: Emerging Technologies 17 2009 365 380
  2. Dosovitskiy , G. , Ros , F. , Codevilla , A. , and Lopez , V.K. 2017 2022
  3. Rong , G. , Hyun Shin , B. , Tabatabaee , H. , Lu , Q. et al. SVL Simulator: A High Fidelity Simulator for Autonomous Driving 2020 23th International Conference on Intelligent Transportation Systems Rhodes, Greece 2020 2022
  4. Craighead , J. , Murphy , R. , Burke , J. , and Goldiez , B. A Survey of Commercial & Open Source Unmanned Vehicle Simulators Proceedings IEEE International Conference on Robotics and Automation Roma, Italy 852 857 2007 https://doi.org/10.1109/ROBOT.2007.363092
  5. Unity 2020 https://www.unrealengine.com
  6. Epic Games 2019 https://www.unity.com
  7. Wang , Z. , Wu , G. , Boriboonsomsin , K. , Barth , M.J. et al. Cooperative Ramp Merging System: Agent-Based Modeling and Simulation Using Game Engine SAE Int. J. CAV 2 2 2019 115 128 https://doi.org/10.4271/12-02-02-0008
  8. Wang , Z. , Han , K. , and Tiwari , P. Digital Twin-Assisted Cooperative Driving at Non-Signalized Intersections IEEE Transactions on Intelligent Vehicles 2021 1 1 https://doi.org/10.1109/TIV.2021.3100465
  9. Wang , Z. , Liao , X. , Wang , C. , Oswald , D. et al. Driver Behavior Modeling Using Game Engine and Real Vehicle: A Learning-Based Approach IEEE Transactions on Intelligent Vehicles 5 4 2020 738 749
  10. Liu , Y. , Wang , Z. , Han , K. , Shou , Z. et al. Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study IEEE Transactions on Intelligent Vehicles 2020 1 1 https://doi.org/10.1109/TIV.2021.3103695
  11. Codevilla , F. , Müller , M. , López , A. , Koltun , V. et al. End-to-End Driving Via Conditional Imitation Learning 2018 IEEE International Conference on Robotics and Automation (ICRA) Brisbane, Australia 2018 4693 4700 https://doi.org/10.1109/ICRA.2018.8460487
  12. Fellendorf , M. and Vortisch , P. Microscopic Traffic Flow Simulator VISSIM International Series in Operations Research & Management Science 145 2010 63 94
  13. Aimsun 2021 qthelp://aimsun.com.aimsun.20.0/doc/UsersManual/Intro.html
  14. Behrisch , M. , Bieker , L. , Erdmann , J. , and Krajzewicz , D. SUMO—Simulation of Urban Mobility an Overview the 3rd International Conference on Advances in system simulation Barcelona, Spain 2011
  15. Krajzewicz , D. et al. International Journal on Advances in Systems and Measurements 5 3 & 4 128 138 2012
  16. Vrbanić , F. , Čakija , D. , Kušić , K. , and Ivanjko , E. Traffic Flow Simulators with Connected and Autonomous Vehicles: A Short Review Petrović , M. , and Novačko , L. Transformation of Transportation. EcoProduction (Environmental Issues in Logistics and Manufacturing) Cham Springer 2021 https://doi.org/10.1007/978-3-030-66464-0_2
  17. Chen , X. , Zhao , H. , Liu , G. , Ren , Y. et al. Assessing the Influence of Adverse Weather on Traffic Flow Characteristics Using a Driving Simulator and VISSIM Sustainability 11 3 2019 830
  18. Althoff , M. , Koschi , M. , and Manzinger , S. CommonRoad: Composable Benchmarks for Motion Planning on Roads 2017 IEEE Intelligent Vehicles Symposium (IV) Los Angeles, CA 2017 719 726 https://doi.org/10.1109/IVS.2017.7995802
  19. Klischat , M. et al. Coupling SUMO with a Motion Planning Framework for Automated Vehicles SUMO Berlin 2019
  20. Schirner , G. , Erdogmus , D. , Chowdhury , K. , and Padir , T. The Future of Human-in-the-Loop Cyber-Physical Systems Computer 46 2013 36 45
  21. Chen , J.B.-C. and Peng , H. Differential-Braking-Based Rollover Prevention for Sport Utility Vehicles with Human-in-the-Loop Evaluations Vehicle System Dynamics 36 2001 359 389 https://doi.org/10.1076/vesd.36.4.359.3546
  22. Li , W. , Sadigh , D. , Sastry , S.S. , and Seshia , S.A. Synthesis for Human-in-the-Loop Control Systems Ábrahám , E. and Havelund , K. Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2014 Lecture Notes in Computer Science 8413 Berlin, Heidelberg Springer 2014 https://doi.org/10.1007/978-3-642-54862-8_40
  23. Biurrun , L.S. and Monreal , C.O. Microscopic Driver-Centric Simulator: Linking Unity3D and SUMO Biurrun-Quel , C. , Serrano-Arriezu , L. , Olaverri-Monreal , C. , Rocha , A. et al. Advances in Intelligent Systems and Computing Springer International Publishing Cham https://doi.org/10.1007/978-3-319-56535-4_83
  24. Szalai , M. , Varga , B. , Tettamanti , T. , and Tihanyi , V. Mixed Reality Test Environment for Autonomous Cars Using Unity 3D and SUMO 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI) Herlany, Slovakia 2020 73 78 https://doi.org/10.1109/SAMI48414.2020.9108745
  25. Lee , K. , Murray , D. , Hughes , D. , and Joosen , W. Extending Sensor Networks into the Cloud Using Amazon Web Services 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications Suzhou 2010 1 7 https://doi.org/10.1109/NESEA.2010.5678063
  26. Deng , H.W. 2020 3466 https://tigerprints.clemson.edu/all_theses/3466
  27. Lopez , P.A. , Behrisch , M. , Walz , L.B. , Erdmann , J. et al. Microscopic Traffic Simulation Using SUMO 2018 21st International Conference on Intelligent Transportation Systems (ITSC) Maui, HI 2018 2575 2582 https://doi.org/10.1109/ITSC.2018.8569938
  28. Deng , H.-W. 2020 3466
  29. AWS 2021 2022 https://aws.amazon.com/vpc/?vpc-blogs.sort-by=item.additionalFields.createdDate&vpc-blogs.sort-order=desc
  30. AWS 2021 https://aws.amazon.com/s3/ 2022
  31. AWS 2021 2022 https://aws.amazon.com/documentdb/
  32. Redis 2021 2022 https://redis.io/
  33. Amazon 2021 2022 https://aws.amazon.com/iot-core/
  34. Hunkeler , U. , Truong , H.L. , and Stanford-Clark , A. MQTT-S—A Publish/Subscribe Protocol for Wireless Sensor Networks 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08) Bangalore, India 2008 791 798 https://doi.org/10.1109/COMSWA.2008.4554519
  35. Arne , K. , Martin , T. , and Dirk , H. Enhanced Intelligent Driver Model to Access the Impact of Driving Strategies on Traffic Capacity Philos. Trans. R. Soc. A368 2010 4585 4605 http://doi.org/10.1098/rsta.2010.0084
  36. Liao , X. , Zhao , X. , Wu , G. , Barth , M.J. et al. 2021 https://doi.org/arxiv-2101.11237
  37. Krauß , S. , Mobilitat , H. , and Koln , S. Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics Sustainable and Intelligent Transportation Systems 11 1998 23 24 https://doi.org/10.3390/su11030830
  38. Erdmann , J. SUMO’s Lane-Changing Model Behrisch , M. and Weber , M. Modeling Mobility with Open Data Lecture Notes in Mobility Cham Springer 2015 https://doi.org/10.1007/978-3-319-15024-6_7
  39. Wang , Z. , Liao , X. , Wang , C. , Oswald , D. et al. Driver Behavior Modeling Using Game Engine and Real Vehicle: A Learning-Based Approach IEEE Transactions on Intelligent Vehicles 5 4 2020 738 749
  40. Augustynowicz , A. Preliminary Classification of Driving Style with Objective Rank Method International Journal of Automotive Technology 10 5 2009 607 610 https://doi.org/10.1007/s12239-009-0071-8
  41. Minderhoud , M.M. and Bovy , P.H.L. Extended Time-to-Collision Measures for Road Traffic Safety Assessment Accident Analysis & Prevention 33 2001 89 97 https://doi.org/10.1016/S0001-4575(00)00019-1
  42. Sultan , B. and McDonald , M. Assessing the Safety Benefit of Automatic Collision Avoidance Systems (during Emergency Braking Situations) 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV) Nagoya, Japan 2003
  43. Kamrani , M. , Arvin , R. , and Khattak , A.J. Extracting Useful Information from Basic Safety Message Data: An Empirical Study of Driving Volatility Measures and Crash Frequency at Intersections Transportation Research Record 2672 38 2018 290 301 https://doi.org/10.1177/0361198118773869

Cited By