This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

Journal Article
11-02-01-0004
ISSN: 2572-1046, e-ISSN: 2572-1054
Published October 14, 2019 by SAE International in United States
Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures
Sector:
Citation: Li, H., Ma, D., Medjahed, B., Kim, Y. et al., "Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures," SAE Int. J. Transp. Cyber. & Privacy 2(1):49-61, 2019, https://doi.org/10.4271/11-02-01-0004.
Language: English

References

  1. Troncoso, C., Danezis, G., Kosta, E., Balasch, J. et al. , “Pripayd: Privacy-Friendly Pay-as-you-drive Insurance,” IEEE Transactions on Dependable and Secure Computing 8(5):742-755, 2011.
  2. P. C. I. Company , “Progressive”. [Online], March 2018. Available from http://www.progressive.com.
  3. Villa, M., Gofman, M., and Mitra, S. , “Survey of Biometric Techniques for Automotive Applications,” . In: Information Technology-New Generations (Berlin, Germany: Springer, 2018), 475-481.
  4. Parkinson, J. , “My Car, My Data?” [Online], April 2016. Available from http://ww2.cfo.com/big-data-technology/2016/04/my-car-my-data-connected-car/.
  5. Alliance of Automobile Manufacturers, INC and Association of Global Automakers, INC , “Consumer Privacy Protection Principles” [Online], November 2014. Available from https://autoalliance.org/wp-content/uploads/2017/01/Consumer_Privacy_Principlesfor_VehicleTechnologies_Services.pdf.
  6. Cavoukian, A., Taylor, S., and Abrams, M.E. , “Privacy by Design: Essential for Organizational Accountability and Strong Business Practices,” Identity in the Information Society 3(2):405-413, 2010.
  7. Dennedy, M.F., Fox, J., and Finneran, T.R. , “Data and Privacy Governance Concepts,” . In: The Privacy Engineer’s Manifesto. (Berkeley, CA, Apress, 2014), 51-72.
  8. The World Wide Web Consortium (W3C), “W3C Privacy Guideline”. [Online]. Available from https://www.w3.org/standards/webdesign/privacy.
  9. National Institute of Standards and Technology (NIST), “NIST Privacy Framework”. [Online]. Available from https://www.nist.gov/privacy-framework.
  10. cleverbridge AG, “Three Frameworks for Data Privacy and Information Security”. [Online]. Available from https://www.cleverbridge.com/corporate/data-privacy-information-security/.
  11. Voigt P. and von dem Bussche, A. The Eu General Data Protection Regulation (gdpr): A Practical Guide (Berlin, Germany: Springer, 2017).
  12. Kindt, E.J. , Privacy and Data Protection Issues of Biometric Applications, Vol. 1 (Berlin, Germany: Springer, 2016).
  13. Michalevsky Y., Schulman A., Veerapandian G.A., Boneh D. et al. , “Powerspy: Location Tracking Using Mobile Device Power Analysis,” in USENIX Security Symposium, Washington, DC, 2015, 785-800.
  14. Das, A., Borisov, N., and Caesar, M. , “Tracking Mobile Web Users through Motion Sensors: Attacks and Defenses,” in NDSS, San Diego, CA, 2016.
  15. Kindt, E.J. , Privacy and Data Protection Issues of Biometric Applications, Vol. 1 (Berlin, Germany: Springer, 2016).
  16. Enev, M., Takakuwa, A., Koscher, K., and Kohno, T. , “Automobile Driver Fingerprinting,” Proceedings on Privacy Enhancing Technologies (1):34-50, 2016.
  17. Gao, X., Firner, B., Sugrim, S., Kaiser-Pendergrast, V. et al. , “Elastic Pathing: Your Speed is Enough to Track You,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, ACM, 2014, 975-986.
  18. Narain, S., Vo-Huu, T.D., Block, K., and Noubir, G. , “Inferring User Routes and LUsing Zero-Permission Mobile Sensors, in 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, IEEE, 2016, 397-413.
  19. Li, H., Zhu, H., Du, S., Liang, X. et al. , “Privacy Leakage of Location Sharing in Mobile Social Networks: Attacks and Defense,” IEEE Transactions on Dependable and Secure Computing 15(4):646-660, 2018.
  20. Li, H., Zhu, H., and Ma, D. , “Demographic Information Inference through Meta-Data Analysis of Wi-Fi Traffic,” IEEE Transactions on Mobile Computing 17(5):1033-1047, 2017.
  21. Nkenyereye, L., Tama, B.A., Park, Y., and Rhee, K.H. , “A Fine-Grained Privacy Preserving Protocol over Attribute Based Access Control for Vanets,” JoWUA 6(2):98-112, 2015.
  22. Hahn, F. and Kerschbaum, F. , “Searchable Encryption with Secure and Efficient Updates,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AR, ACM, 2014, 310-320.
  23. Li, N., Li, T., and Venkatasubramanian, S. , “t-closeness: Privacy beyond k-Anonymity and l-Diversity,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, Istanbul, Turkey, IEEE, 2007, 106-115.
  24. Dwork, C. , “Differential Privacy: A Survey of Results,” in International Conference on Theory and Applications of Models of Computation, Xi’an, China. Springer, 2008, 1-19.
  25. Acquisti, A., Brandimarte, L., and Loewenstein, G. , “Privacy and Human Behavior in the Age of Information,” Science 347(6221):509-514, 2015.

Cited By