This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System
- Hui Wang - Civil Aviation University of China, College of Aeronautical Engineering, China ,
- Xiao Lv - Civil Aviation University of China, College of Aeronautical Engineering, China ,
- Wei Zhang - Civil Aviation University of China, College of Aeronautical Engineering, China ,
- Hengjia Zhu - Civil Aviation University of China, College of Aeronautical Engineering, China
Journal Article
10-06-02-0012
ISSN: 2380-2162, e-ISSN: 2380-2170
Sector:
Citation:
Wang, H., Lv, X., Zhang, W., and Zhu, H., "Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System," SAE Int. J. Veh. Dyn., Stab., and NVH 6(2):175-188, 2022, https://doi.org/10.4271/10-06-02-0012.
Language:
English
Abstract:
The civil aircraft nosewheel is clamped, lifted, and retained through the pick-up
and holding system of the towbarless towing vehicle (TLTV), and the aircraft may
be moved from the parking position to an adjacent one, the taxiway, a
maintenance hangar, a location near the active runway, or conversely only with
the power of the TLTV. The TLTV interfacing with the nose-landing gear of civil
transport aircraft for the long-distance towing operations at a high speed could
be defined as a towbarless aircraft taxiing system (TLATS). The dynamic loads
induced by the system vibration may cause damage or reduce the certified
safe-life limit of the nose-landing gear or the TLTV when the towing speed
increases up to 40 km/h during the towing operations due to the maximum ramp
weight of a heavy aircraft. In this article, the vibration differential
equations for the TLATS are derived based on Newton’s second law, and the
corresponding matrix formulas are obtained through Laplace transforms. The
vibration transmissibilities of the system motion responses to the harmonic road
input are evaluated in terms of the frequency response functions (FRFs) in the
frequency domain. The simulations are conducted to compare the ride comforts
between the TLTV at a low speed of 10 km/h and that at 40 km/h under the random
and bump road excitations, respectively. Further, the effects of the aircraft
mass, driver seat stiffness coefficient, TLTV center of gravity (CG) location,
and the driver seat location on system vibration characteristics in both time
and frequency domains are investigated. The results show that the TLTV CG
location, the driver seatstiffness coefficient, and location are relatively
sensitive to a TLATS’s ride comfort, which is significant to the TLTV
manufacturer.