This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimizing the Geometrical Dimensions of the Seat Suspension Equipped with a Negative Stiffness Structure Based on a Genetic Algorithm

Journal Article
10-06-02-0010
ISSN: 2380-2162, e-ISSN: 2380-2170
Published February 02, 2022 by SAE International in United States
Optimizing the Geometrical Dimensions of the Seat Suspension Equipped
                    with a Negative Stiffness Structure Based on a Genetic Algorithm
Sector:
Citation: Zha, J., Nguyen, V., Ni, D., and Su, B., "Optimizing the Geometrical Dimensions of the Seat Suspension Equipped with a Negative Stiffness Structure Based on a Genetic Algorithm," SAE Int. J. Veh. Dyn., Stab., and NVH 6(2):147-158, 2022, https://doi.org/10.4271/10-06-02-0010.
Language: English

References

  1. Hostens , I. , Deprez , K. , and Ramon , H. An Improved Design of Air Suspension for Seats of Mobile Agricultural Machines Journal of Sound and Vibration 276 1-2 2004 141 156 https://doi.org/10.1016/j.jsv.2003.07.018
  2. Yan , J. , Yin , Z. , Guo , X. , and Fu , C. Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms SAE Technical Paper 2008-01-2681 2008 https://doi.org/10.4271/2008-01-2681
  3. Maciejewski , I. Control System Design of Active Seat Suspensions Journal of Sound and Vibration 331 6 2012 1291 1309 https://doi.org/10.1016/j.jsv.2011.11.010
  4. Sim , K. , Lee , H. , Yoon , J. et al. Effectiveness Evaluation of Hydro-Pneumatic and Semi-active Cab Suspension for the Improvement of Ride Comfort of Agricultural Tractors Journal of Terramechanics 69 2017 23 32 https://doi.org/10.1016/j.jterra.2016.10.003
  5. Nguyen , V. , Zhang , J. , Le , V. et al. Vibration Analysis and Modeling of an Off-Road Vibratory Roller Equipped with Three Different Cab’s Isolation Mounts Shock and Vibration 2018 2018 1 17 https://doi.org/10.1155/2018/8527574
  6. Nguyen , V. , Jiao , R. , and Zhang , J. Control Performance of Damping and Air Spring of Heavy Truck Air Suspension System with Optimal Fuzzy Control J. Veh. Dyna., Stab., and NVH 4 2 2020 179 194 https://doi.org/10.4271/10-04-02-0013
  7. John , H. , Michael , G. , and Gregory , D. Multi-Objective Control Optimization for Semi-active Vehicle Suspensions Journal of Sound and Vibration 330 4 2011 5502 5516 https://doi.org/10.1016/j.jsv.2011. 05.036
  8. Nariman , Z. , Salehpour , M. , Jamali , A. , and Hanghgoo , E. Pareto Optimization of a Five-Degree of Freedom Vehicle Vibration Model Using a MUGA Engineering Applications of Artificial Intelligence 23 4 2010 543 551 https://doi.org/10.1016/j.engappai.2009.08.008
  9. Wang , W. , Song , Y. , Xue , Y. , Jin , H. et al. An Optimal Vibration Control Strategy for a Vehicle’s Active Suspension based on Improved Cultural Algorithm Applied Soft Computing Journal 28 2015 167 174 https://doi.org/10.1016/j.asoc.2014.11.047
  10. Nguyen , V. , Zhang , J. , and Yang , X. Low-Frequency Performance of Semi-active Cab’s Hydraulic Mounts of an Off-Road Vibratory Roller Shock and Vibration 2019 2019 1 15 https://doi.org/10.1155/2019/8725382
  11. Zhu , Y. , Bian , X. , Su , L. , and Gu , C. Ride Comfort Improvement with Preview Control Semi-active Suspension System Based on Supervised Deep Learning SAE Int. J. Veh. Dyn., Stab., and NVH 5 1 2021 31 44 https://doi.org/10.4271/10-05-01-0003
  12. Hua , W. , Nguyen , V. , and Zhou , H. Experimental Investigation and Vibration Control of Semi-active Hydraulic-Pneumatic Mounts for Vibratory Roller Cab SAE Int. J. Veh. Dyn., Stab., and NVH 5 4 2021 409 423 https://doi.org/10.4271/10-05-04-0028
  13. Lee , C. and Goverdovskiy , V. A Multi-Stage High-Speed Railroad Vibration Isolation System with ‘Negative’ Stiffness Journal of Sound and Vibration 331 4 2012 914 921 https://doi.org/10.1016/j.jsv.2011.09.014
  14. Le , T. and Ahn , K. A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat Journal of Sound and Vibration 330 26 2011 6311 6335 https://doi.org/10.1016/j.jsv.2011.07.039
  15. Davoodi , E. , Safarpour , P. , Pourgholi , M. , and Khazaee , M. Design and Evaluation of Vibration Reducing Seat Suspension Based on Negative Stiffness Structure Part C: Journal of Mechanical Engineering Science 234 21 2020 4171 4189 https://doi.org/10.1177/0954406220921203
  16. Saini , M. Modelling and Simulation of Vehicle Suspension System with Variable Stiffness Using Quasi-Zero Stiffness Mechanism SAE Int. J. Veh. Dyn., Stab., and NVH 4 1 2020 37 47 https://doi.org/10.4271/10-04-01-0003
  17. Yang , J. , Xiong , Y. , and Xing , J. Dynamics and Power Flow Behaviour of a Nonlinear Vibration Isolation System with a Negative Stiffness Mechanism Journal of Sound and Vibration 332 1 2013 167 186 https://doi.org/10.1016/j.jsv.2012.08.010
  18. Shi , X. and Zhu , S. Simulation and Optimization of Magnetic Negative Stiffness Dampers Sensors and Actuators A: Physical 259 2017 14 33 https://doi.org/10.1016/j.sna.2017.03.026
  19. Palomares , E. , Nieto , A. , Morales , A. , Chicharro , J. et al. Numerical and Experimental Analysis of a Vibration Isolator Equipped with a Negative Stiffness System Journal of Sound and Vibration 414 2018 31 42 https://doi.org/10.1016/j.jsv.2017.11.006
  20. Múčka , P. Passenger Car Vibration Dose Value Prediction Based on ISO 8608 Road Surface Profiles SAE Int. J. Veh. Dyn., Stab., and NVH 5 4 2021 425 441 https://doi.org/10.4271/10-05-04-0029
  21. ISO 8068 1995
  22. Carletti , E. and Pedrielli , F. Tri-axial Evaluation of the Vibration Transmitted to the Operators of Crawler Compact Loaders International Journal of Industrial Ergonomics 68 2018 46 56 https://doi.org/10.1016/j.ergon. 2018. 06.007
  23. ISO 2631-1:1997 1997
  24. Griffin , M. Handbook of Human Vibration London Elsevier Academic Press 1996
  25. Armando , P. , Andrés , A. , Joaquín , M. et al. A Methodology for Damping Measurement of Engineering Materials: Application to a Structure under Bending and Torsion Loading Journal of Vibration and Control 22 10 2016 2471 2481 https://doi.org/10.1177/1077546314547728

Cited By