This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modal Identification of Motorcycle Tires Using Circumferential Wave Number Decomposition

Journal Article
10-05-03-0022
ISSN: 2380-2162, e-ISSN: 2380-2170
Published April 07, 2021 by SAE International in United States
Modal Identification of Motorcycle Tires Using Circumferential Wave Number Decomposition
Sector:
Citation: Tajiri, D., Matsubara, M., Ojiro, M., Sato, M. et al., "Modal Identification of Motorcycle Tires Using Circumferential Wave Number Decomposition," SAE Int. J. Veh. Dyn., Stab., and NVH 5(3):317-331, 2021, https://doi.org/10.4271/10-05-03-0022.
Language: English

References

  1. Suzuki , K. , Uchida , H. , Kida , S. , Sonehara , T. et al. The Trial to Quantify the Feeling of Sound and Vibration (“Kodo-Kan”) for the Motorcycle SAE Technical Paper 2013-32-9148 2013 https://doi.org/10.4271/2013-32-9148
  2. Kuwahara , H. , Fukui , Y. , Kido , H. , Mas , P. et al. Virtual Assessment of Motorcycle Vibrations SAE Technical Paper 2001-01-1849 2001 https://doi.org/10.4271/2001-01-1849
  3. Koyano , M. , Takeuchi , T. , Ohara , T. , and Yokoi , M. Establishment of Evaluation Method for Riding Comfort of Motorcycle Seats Honda R&D Technical Review (in Japanese) 19 2 117 122 2007
  4. Mohite , U. , Bhatia , N. , and Bhavsar , P. An Approach for Prediction of Motorcycle Engine Noise under Combustion Load SAE Technical Paper 2015-01-2244 2015 https://doi.org/10.4271/2015-01-2244
  5. Ganguly , A. , Bhatia , N. , and Agarwal , V. Balancing Optimization of a Motorcycle Engine Crankshaft for Vibration Reduction SAE Technical Paper 2016-01-1060 2016 https://doi.org/10.4271/2016-01-1060
  6. Miki , H. , and Kuwahara , H. Approach Combined Numerical and Experimental Analysis for Motorcycle Engine Radiation Noise SAE Technical Paper 2006-32-0086 2006 https://doi.org/10.4271/2006-32-0086
  7. Tanase , R. Kansei Modeling for Motorcycle Sound Journal of Society of Automotive Engineers of Japan(in Japanese) 74 7 68 73 2020
  8. Fischer , P. , Pürscher , M. , Huemer-Kals , S. , and Prezelj , J. Characterization of Brake Creep Groan Vibrations SAE Technical Paper 2020-01-1505 2020 https://doi.org/10.4271/2020-01-1505
  9. Suwa , J. , Hokari , K. , Oda , M. , Kaneda , T. et al. Study on the Vibration of Motorcycle Muffler System SAE Technical Paper 2001-01-1868 2001 https://doi.org/10.4271/2001-01-1868
  10. Yu , F. , and Xie , J. Analysis of Motorcycle Vibration Comfort Based on Rigid-Flexible Coupling Model Noise & Vibration Worldwide 51 6 110 115 2020
  11. Sharp , R.S. , and Limebeer , D.J.N. A Motorcycle Model for Stability and Control Analysis Multibody System Dynamics 6 123 142 2001
  12. Sharp , R.S. , Evangelou , S. , and Limebeer , D.J.N. Advances in the Modelling of Motorcycle Dynamics Multibody System Dynamics 12 251 283 2004
  13. Lot , R. A Motorcycle Tire Model for Dynamic Simulations: Theoretical and Experimental Aspects Meccanica 39 207 220 2004
  14. Mohan , B. , Karanam , V.M. , and Padmanabhan , C. Novel Low Cost Experimental Procedures to Estimate the Longitudinal Force Characteristics of a Tire SAE Technical Paper 2015-32-0709 2015
  15. Ewins , D.J. Modal Testing, Theory, Practice, and Application Second Hertfordshire Research Studies Press Ltd 2000 422 427
  16. Jimin , H. , and Zhi-Fang , F. Modal Analysis Milton Keynes Butterworth Heinemann 2001
  17. Waki , Y. , Kozuki , K. , and Heguri , H. Estimation of Noise Radiating Parts of a Tire Using the Wave Finite Element Method Proceedings of the Internoise 2011 Osaka, Japan 2001 1 577 584
  18. Vercammen , S. , Diaz , C.G. , Kindt , P. , Thiry , C. et al. Dynamic Behavior of Rolling Tires under Different Operating Conditions Proceedings of the Internoise 2012/ASME NCAD Meeting New York 2012 301 307
  19. Shih , C.Y. , Tsuei , Y.G. , Allemang , R.J. , and Brown , D.L. Complex Mode Indication Function and Its Applications to Spatial Domain Parameter Estimation Proceedings of the 7th International Modal Analysis Conference (IMAC VII) Las Vegas, NV 1989 533 540
  20. Matsuoka , H. , Okuma , M. , and Ando , M. A New Experimental Modal Parameter Estimation Method for Cylindrical Structures by Standing Wave Decomposition and Application to Tire Modeling Transactions of the Japan Society of Mechanical Engineers Series C (in Japanese) 68 675 3322 3328 2002
  21. Kitahara , A. , and Yoshimura , T. Modal Identification of Cylindrical Shell Using Circumference Reduction Method Transactions of the JSME (in Japanese) 81 822 2015 https://doi.org/10.1299/transjsme.14-00461
  22. Fiala , E. Seitenkräfte am rollenden Luftreifen bei periodischen Felgenquerbewegungen. [Lateral Forces on the Rolling Pneumatic tire with Periodic Lateral Rim Movements.] VDI-Z. 96 973 979 1954
  23. Tielking , J. Plane Vibration Characteristics of a Pneumatic Tire Model SAE Technical Paper 650492 1965 https://doi.org/10.4271/650492
  24. Sams , T. The Effect of Structural Damping Foam on Tire Vibration SAE Int. J. Veh. Dyn., Stab., and NVH 4 2 83 96 2020 https://doi.org/10.4271/10-04-02-0006
  25. Wei , Y.T. , Nasdala , L. , and Rothert , H. Analysis of Forced Transient Response for Rotating Tires Using REF Models Journal of Sound and Vibration 320 145 2009
  26. Matsubara , M. , Tsujiuchi , N. , Koizumi , T. , Hirano , Y. et al. Vibration Behavior Analysis of Tire Bending Mode Exciting Lateral Axial Forces SAE Int. J. Passeng. Cars - Mech. Syst. 6 2 1171 1176 2013 https://doi.org/10.4271/2013-01-1911
  27. Matsubara , M. , Tsujiuchi , N. , Koizumi , T. , and Hirano , Y. Vibration Analysis of Tire Circumferential Mode Under Loaded Axle SAE Int. J. Passeng. Cars - Mech. Syst. 6 2 1154 1160 2013 https://doi.org/10.4271/2013-01-1909
  28. Kawamura , S. , Kita , M. , Matsubara , M. , and Ise , T. Study of the Effect of Specimen Size and Frequency on the Structural Damping Property of Beam Mechanical Engineering Journal 3 6 2016 https://doi.org/10.1299/mej.16-00446
  29. Matsubara , M. , Ise , T. , and Kawamura , S. Application of Modal Properties Identification to Multi-Degree-of-Freedom System Using Simultaneous Equations of the Real and Imaginary Parts of Frequency Response Function Transactions of the JSME (in Japanese) 84 860 2018 https://doi.org/10.1299/transjsme.17-00540
  30. Matsubara , M. , Akira , S. , and Kawamura , S. Estimation of Modal Parameters by Using the Ratios of Imaginary to Real Parts of Frequency Response Functions Archive of Applied Mechanics 91 1179 1191 2020 https://doi.org/10.1007/s00419-020-01817-w
  31. Scavuzzo , R. , Charek , L. , Sandy , P. , and Shteinhauz , G. Influence of Wheel Resonance on Tire Acoustic Cavity Noise SAE Technical Paper 940533 1994 https://doi.org/10.4271/940533
  32. Yamauchi , H. , and Akiyoshi , Y. Theoretical Analysis of Tire Acoustic Cavity Noise and Proposal of Improvement Technique JSAE Review 23 1 89 94 2002 https://doi.org/10.1016/S0389-4304(01)00152-7
  33. Hayashi , T. Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance SAE Technical Paper 2007-01-2345 2007 https://doi.org/10.4271/2007-01-2345

Cited By