This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of a Nonlinear Stability Controller for Ground Vehicles Subjected to a Tire Blowout Using Double-Integral Sliding-Mode Controller

Journal Article
10-05-03-0020
ISSN: 2380-2162, e-ISSN: 2380-2170
Published April 21, 2021 by SAE International in United States
Design of a Nonlinear Stability Controller for Ground Vehicles Subjected to a Tire Blowout Using Double-Integral Sliding-Mode Controller
Sector:
Citation: Alquran, M. and Mayyas, A., "Design of a Nonlinear Stability Controller for Ground Vehicles Subjected to a Tire Blowout Using Double-Integral Sliding-Mode Controller," SAE Int. J. Veh. Dyn., Stab., and NVH 5(3):291-305, 2021, https://doi.org/10.4271/10-05-03-0020.
Language: English

References

  1. Choi , E.H. Tire-Related Factors in the Pre-Crash Phase Tires: Select Research on Pre-Crash Problems and Tire Pressure Monitoring New York Nova Science Publishers 2013 53 82
  2. United States Department of Transportation https://www.nhtsa.gov/equipment/tires 2020
  3. Blythe , W. , Day , T.D. , and Grimes , W.D. 3-Dimensional Simulation of Vehicle Response to Tire Blow-Outs SAE Technical Paper 980221 1998 https://doi.org/10.4271/980221
  4. Han , I. Modelling the Tyre Forces for a Simulation Analysis of a Vehicle Accident Reconstruction Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 231 1 16 26 2017 10.1177/0954407016630449
  5. Bolarinwa , E.O. and Olatunbosun , O.A. Finite Element Simulation of the Tyre Burst Test Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218 11 1251 1258 2004 10.1243/0954407042580075
  6. Cai , Y. , Zang , M. , and Duan , F. Modeling and Simulation of Vehicle Responses to Tire Blowout Tire Sci. Technol. 43 3 242 258 2015
  7. Gipser , M. FTire, a New Fast Tire Model for Ride Comfort Simulations International ADAMS User’s Conference Berlin 1 11 1999
  8. Guo , K. , Chen , P. , Xu , N. , Yang , C. et al. Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure SAE Int. J. Veh. Dyn., Stab., and NVH 3 1 19 30 2019 https://doi.org/10.4271/10-03-01-0002
  9. Rajamani , R. Vehicle Dynamics and Control (Mechanical Engineering Series) Second New York Springer 2012 10.1007/b22134
  10. Patwardhan , S. , Tan , H.S. , and Tomizuka , M. Experimental Results of a Tire-Burst Controller for AHS Control Eng. Pract. 5 11 1615 1622 1997 10.1016/S0967-0661(97)10017-X
  11. Lu , S. , Lian , M. , Cao , Z. , Zheng , T. et al. Active Rectifying Control of Vehicle with Tire Blowout Based on Adaptive Fuzzy Proportional-Integral-Derivative Control Adv. Mech. Eng. 11 3 168781401983510 2019 10.1177/1687814019835108
  12. Li , S. , Zong , C. , Chen , G. , and He , L. A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel SAE Technical Paper 2013-01-1239 2013 https://doi.org/10.4271/2013-01-1239
  13. Horak , D.T. and Lack , S.K. Dynamics of Tire Blowout Events and Driver Assist System for Controlling Them ASME 2015 Dynamic Systems and Control Conference, DSCC 2015 Columbus, OH 2015 10.1115/DSCC2015-9621
  14. Yang , L. , Yue , M. , Zhang , H. , and Xu , G. Toward Hazard Reduction of Road Vehicle after Tire Blowout: A Driver Steering Assist Control Strategy Chinese Control Conference CCC 2019 Guangzhou, China 6600 6605 2019 10.23919/ChiCC.2019.8865137
  15. Yang , L. , Yue , M. , Wang , J. , and Hou , W. RMPC-Based Directional Stability Control for Electric Vehicles Subject to Tire Blowout on Curved Expressway J. Dyn. Syst. Meas. Control. Trans. ASME 141 4 1 9 2019 10.1115/1.4042029
  16. Guo , H. , Wang , F. , Chen , H. , and Guo , D. Stability Control of Vehicle with Tire Blowout Using Differential Flatness Based MPC Method Proceedings of the World Congress on Intelligent Control and Automation Beijing, China 2066 2071 2012 10.1109/WCICA.2012.6358216
  17. Mo , T. , Zhang , X. , Fan , K. , Mo , W. , and Qiu , Y. Design and Simulation of the Sliding Mode Controller for the Vehicle Blow-Out Process Control Int. J. Veh. Saf. 6 4 333 346 2013 10.1504/IJVS.2013.056967
  18. Jing , H. and Liu , Z. Gain-Scheduling Robust Control for a Tire-Blow-Out Road Vehicle Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 233 2 344 362 2019 10.1177/0954407017743411
  19. Meng , Q. , Qian , C. , and Sun , Z.Y. Finite-Time Stability Control of an Electric Vehicle under Tyre Blowout Trans. Inst. Meas. Control 41 5 1395 1404 2019 10.1177/0142331218780967
  20. Liu , H. , Deng , W. , Zong , C. , and Wu , J. Development of Active Control Strategy for Flat Tire Vehicles SAE Technical Paper 2014-01-0859 2014 https://doi.org/10.4271/2014-01-0859
  21. Yu , L. , Wang , Z. , Pan , N. , Zhang , L. et al. Stability Control for Tire Blowout Vehicle Based on Brake by Wire System Considering Driver Operation Proceedings of the ASME Design Engineering Technical Conference 2014 10.1115/DETC2014-35564
  22. Dai , Y. , Song , J. , and Yu , L. Vehicle Stability Control on Tire Burst Steering & Braking Condition with Active Steering System Proceedings of the ASME Design Engineering Technical Conference Quebec City, Canada 2018 10.1115/DETC2018-85283
  23. Wang , F. , Chen , H. , Guo , H. , and Cao , D. Constrained H∞ Control for Road Vehicles after a Tire Blow-Out Mechatronics 30 371 382 2015 10.1016/j.mechatronics.2014.12.007
  24. Wang , F. , Chen , H. , and Cao , D. Nonlinear Coordinated Motion Control of Road Vehicles after a Tire Blowout IEEE Trans. Control Syst. Technol. 24 3 956 970 2016 10.1109/TCST.2015.2472982
  25. Wang , F. , Hao , N. , Song , L. , and Chen , H. Triple-Step Nonlinear Control Design for Road Vehicles after a Tire Blow-Out on the Highway Proceedings of the World Congress on Intelligent Control and Automation (WCICA) Guilin, China 2016 10.1109/WCICA.2016.7578607
  26. Wang , F. , Chen , H. , Guo , K. , and Cao , D. A Novel Integrated Approach for Path Following and Directional Stability Control of Road Vehicles after a Tire Blow-Out Mech. Syst. Signal Process. 93 431 444 2017 10.1016/j.ymssp.2017.02.016
  27. Kutluay , E. and Winner , H. Assessment Methodology for Validation of Vehicle Dynamics Simulations Using Double Lane Change Maneuver Proceedings - Winter Simulation Conference Berlin, Germany 2012 10.1109/WSC.2012.6465027
  28. Subudhi , B. and Ge , S.S. Sliding-Mode-Observer-Based Adaptive Slip Ratio Control for Electric and Hybrid Vehicles IEEE Trans. Intell. Transp. Syst. 13 4 1617 1626 2012 10.1109/TITS.2012.2196796
  29. Pradhan , R. and Subudhi , B. Double Integral Sliding Mode MPPT Control of a Photovoltaic System IEEE Trans. Control Syst. Technol. 24 1 285 292 2016 10.1109/TCST.2015.2420674
  30. Velupillai , S. and Guvenc , L. Tire Pressure Monitoring [Applications of Control] IEEE Control Syst. Mag. 27 99 2008 10.1109/mcs.2007.4339283
  31. Taylor , P. and Murata , S. Innovation by In-Wheel-Motor Drive Unit Vehicle System Dynamics 50 6 807 830 2012 10.1080/00423114.2012.666354

Cited By