An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires

Journal Article
10-03-03-0013
ISSN: 2380-2162, e-ISSN: 2380-2170
Published August 21, 2019 by SAE International in United States
An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires
Sector:
Citation: Mange, A., Atkinson, T., Bastiaan, J., and Baqersad, J., "An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires," SAE Int. J. Veh. Dyn., Stab., and NVH 3(3):197-208, 2019, https://doi.org/10.4271/10-03-03-0013.
Language: English

References

  1. Kindt, P., DeConinck, F., Sas, P., Desmet, W. , “Experimental Modal Analysis of Radial Tires and the Influence of Tire Modes on Vehicle Structure Borne Noise”, Proceedings of the 31st FISITA 2006, Word Automotive Congress, Yokohama, Japan, 2006.
  2. Niskanen, A.J. and Tuononen, A.J. , “Three 3-Axis Accelerometers Fixed Inside the Tyre for Studying Contact Patch Deformations in Wet Conditions,” Vehicle System Dynamics 52:287-298, 2014.
  3. Patil, K., Baqersad, J., and Bastiaan, J. , “Effects of Boundary Conditions and Inflation Pressure on the Natural Frequencies and 3D Mode Shapes of a Tire,” SAE Technical Paper 2017-01-1905 , 2017, doi:10.4271/2017-01-1905.
  4. Tuononen, A.J. , “Laser Triangulation to Measure the Carcass Deflections of a Rolling Tire,” Measurement Science and Technology 22:125304, 2011.
  5. Lee, J., Wang, S., Kindt, P., Pluymers, B., and Desmet, W. , “Identification of the Direction and Value of the Wave Length of Each Mode for a Rotating Tire Using the Phase Difference Method,” Mechanical Systems and Signal Processing 68:292-301, 2016.
  6. Chu, T., Ranson, W., and Sutton, M. , “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Exp Mech 25:232-244, 1985.
  7. Sutton, M., Wolters, W., Peters, W., Ranson, W., and McNeill, S. , “Determination of Displacements Using an Improved Digital Correlation Method,” Image and Vision Computing 1:133-139, 1983.
  8. Peters, W.H. and Ranson, W.F. , “Digital Imaging Techniques in Experimental Stress Analysis,” OPTICE 21:213427, 1982, doi:10.1117/12.7972925.
  9. Sutton, M.A., Orteu, J.J., and Schreier, H. , Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (New York: Springer Science & Business Media, 2009).
  10. Reu, P. , “Introduction to Digital Image Correlation: Best Practices and Applications,” Experimental Techniques 36:3-4, 2012.
  11. Baqersad, J., Carr, J., Lundstrom, T., Niezrecki, C., Avitabile, P., and Slattery, M. , “Dynamic Characteristics of a Wind Turbine Blade Using 3D Digital Image Correlation,” in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, San Diego, CA, Vol. 8348, 2012, International Society for Optics and Photonics, 83482I.
  12. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P., and Slattery, M. , “Dynamic Stress-Strain on Turbine Blades Using Digital Image Correlation Techniques Part 2: Dynamic Measurements,” in Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Vol.2, (New York: Springer, 2012), 221-226.
  13. Panchal, R., Horton, L., Poozesh, P., Baqersad, J., and Nasiriavanaki, M. , “Vibration Analysis of Healthy Skin: Towards a Novel Non-Invasive Skin Diagnosis Methodology,” BIOMEDO 24:1-11, 2019, doi:10.1117/1.JBO.24.1.015001.
  14. Baqersad, J., Poozesh, P., Niezrecki, C., and Avitabile, P. , “Photogrammetry and Optical Methods in Structural Dynamics - A Review,” Mechanical Systems and Signal Processing 86: Part B, 17-34, 2017, doi:10.1016/j.ymssp.2016.02.011.
  15. Niezrecki C., Baqersad J., and Sabato A. , “Digital Image Correlation Techniques for NDE and SHM,”in Handbook of Advanced Non-Destructive Evaluation, (2018),1-46, Springer, Cham, doi:10.1007/978-3-319-30050-4_47-1.
  16. Kim, S.-W. and Kim, N.-S. , “Dynamic Characteristics of Suspension Bridge Hanger Cables Using Digital Image Processing,” NDT&E International 59:25-33, 2013, doi:10.1016/j.ndteint.2013.05.002.
  17. Olaszek, P. , “Investigation of the Dynamic Characteristic of Bridge Structures Using a Computer Vision Method,” Measurement 25:227-236, 1999, doi:10.1016/S0263-2241(99)00006-8.
  18. Lee, J.J. and Shinozuka, M. , “A Vision-Based System for Remote Sensing of Bridge Displacement,” NDT&E International 39:425-431, 2006, doi:10.1016/j.ndteint.2005.12.003.
  19. Poozesh, P., Baqersad, J., Niezrecki, C., Avitabile, P. et al. , “Large-Area Photogrammetry Based Testing of Wind Turbine Blades,” Mechanical Systems and Signal Processing 86:97-115, 2016, doi:10.1016/j.ymssp.2016.07.021.
  20. Ozbek, M., Rixen, D.J., Erne, O., and Sanow, G. , “Feasibility of Monitoring Large Wind Turbines Using Photogrammetry,” Energy 35:4802-4811, 2010, doi:10.1016/j.energy.2010.09.008.
  21. Kalpoe, D., Khoshelham, K., and Gorte, B. , “Vibration Measurement of a Model Wind Turbine Using High Speed Photogrammetry,” in Videometrics, Range Imaging, and Applications XI, Munich, Germany, May 25-May 26, 2011, The Society of Photo-Optical Instrumentation Engineers (SPIE), doi:10.1117/12.889440.
  22. Poozesh, P., Sarrafi, A., Mao, Z., Avitabile, P., and Niezrecki, C. , “Feasibility of Extracting Operating Shapes Using Phase-Based Motion Magnification Technique and Stereo-Photogrammetry,” Journal of Sound and Vibration 407:350-366, 2017, doi:10.1016/j.jsv.2017.06.003.
  23. Lundstrom, T., Baqersad, J., and Niezrecki, C. , “Monitoring the Dynamics of a Helicopter Main Rotor with High-Speed Stereophotogrammetry,” Experimental Techniques 40:907-919, 2015, doi:10.1111/ext.12127.
  24. Caprioli, A., Manzoni, S., and Zappa, E. , “People-Induced Vibrations of Civil Structures: Image-Based Measurement of Crowd Motion,” Experimental Techniques 35:71-79, 2011, doi:10.1111/j.1747-1567.2009.00574.x.
  25. Zbožínek, V., Tomčík, P., Kulhánek, J., Fojtík, P., Buráň, M., and Suchánek, M. , “Car Axle Testing on Hydropulse,” in 18th International Carpathian Control Conference (ICCC), IEEE, Sinaia, Romania, 2017, 1-4.
  26. Patil, K., Srivastava, V., and Baqersad, J. , “A Multi-View Optical Technique to Obtain Mode Shapes of Structures,” Measurement 122:358-367, 2018, doi:10.1016/j.measurement.2018.02.059.
  27. Kindt, P., delliCarri, A., Peeters, B., Van der Auweraer, H., Sas, P., and Desmet, W. , “Operational Modal Analysis of a Rotating Tyre Subject to Cleat Excitation,” in Structural Dynamics, Vol.3 (New York: Springer, 2011), 1501-1512.
  28. Niezrecki, C., Reu, P., Baqersad, J., and Rohe, D. , “DIC and Photogrammetry for Structural Dynamic Analysis and High-Speed Testing,” in Allemang, R. and Avitabile, P. (eds), Handbook of Experimental Structural Dynamics (Cham: Springer, 2021).
  29. Srivastava, V. and Baqersad, J. , “An Optical-Based Technique to Obtain Operating Deflection Shapes of Structures with Complex Geometries,” Mechanical Systems and Signal Processing 128:69-81, 2019.
  30. Gillespie, T.D. , “Fundamentals of Vehicle Dynamics,” (Warrendale, PA: Society of Automotive Engineers, 1992), Product Code: R-114, doi:10.4271/R-114.

Cited By