Open Access

Analysis of Deflection and Contact Characteristics of a Pneumatic Tire Using Three-Dimensional Membrane Ring and Brush Models

Journal Article
06-13-02-0009
ISSN: 1946-3995, e-ISSN: 1946-4002
Published June 24, 2020 by SAE International in United States
Analysis of Deflection and Contact Characteristics of a Pneumatic Tire Using Three-Dimensional Membrane Ring and Brush Models
Sector:
Citation: Matsubara, M., Ishitsu, K., and Kawamura, S., "Analysis of Deflection and Contact Characteristics of a Pneumatic Tire Using Three-Dimensional Membrane Ring and Brush Models," SAE Int. J. Passeng. Cars - Mech. Syst. 13(2):117-124, 2020, https://doi.org/10.4271/06-13-02-0009.
Language: English

References

  1. Kuwayama , I. , Baldoni , F. , and Cheli , F. A Full Vehicle Model for the Development of a Variable Camber Suspension Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007 Nevada, USA 1211 1222 https://doi.org/10.1115/DETC2007-34679
  2. Koketsu , Y. , Takehara , S. , Terumichi , Y. , Shida , Z. , and Ikeda , T. Wear Behavior Analysis Using the Multi-Mass Tire Model Mechanical Engineering Journal 4 4 2017 https://doi.org/10.1299/mej.17-00025
  3. Bundorf , R. and Leffert , R. The Cornering Compliance Concept for Description of Vehicle Directional Control Properties SAE Technical Paper 760713 1976 https://doi.org/10.4271/760713
  4. Kawabe , T. , Nakazawa , M. , Notsu , I. , and Watanabe , Y. A Sliding Mode Controller for Wheel Slip Ratio Control System Vehicle System Dynamics 27 5-6 393 408 1997 https://doi.org/10.1080/00423119708969338
  5. Pacejka , H.B. and Bakker , E. The Magic Formula Tyre Model Vehicle System Dynamics 21 Sup 001 1 18 1992 https://doi.org/10.1080/00423119208969994
  6. Pacejka , H.B. Tyre and Vehicle Dynamics Third Oxford Butterworth-Heinemann 2002 582 586 https://doi.org/10.1016/C2010-0-68548-8
  7. Maclaurin , B. Using a Modified Version of the Magic Formula to Describe the Traction/Slip Relationships of Tyres in Soft Cohesive Soils Journal of Terramechanics 52 1 7 2014 https://doi.org/10.1016/j.jterra.2013.11.005
  8. Farroni , F. , Lamberti , R. , Mancinelli , N. , and Timpone , F. TRIP-ID: A Tool for a Smart and Interactive Identification of Magic Formula Tyre Model Parameters from Experimental Data Acquired on Track or Test Rig Mechanical Systems and Signal Processing 102 1 2018 1 22 https://doi.org/10.1016/j.ymssp.2017.07.025
  9. Tanaka , K. and Kageyama , I. Study of Tire Model for the Estimation of Design Parameters Transactions of Society of Automotive Engineers of Japan (in Japanese) 30 2 99 104 1999
  10. Fiala , E. Seitenkr afte am rollenden luftreifen VDI zeitschrift 96 29 973 979 1954
  11. Gipser , M. FTire: A Physically Based Application-Oriented Tyre Model for Use with Detailed MBS and Finite-Element Suspension Models Vehicle System Dynamics 43 Sup 1 76 91 2005 https://doi.org/10.1080/00423110500139940
  12. Pauwelussen , J.P. , Gootjes , L. , Schröder , C. , Köhne , K.U. et al. Full Vehicle ABS Braking Using the SWIFT Rigid Ring Tyre Model Control Engineering Practice 11 2 199 207 2013 https://doi.org/10.1016/S0967-0661(02)00185-5
  13. Gallrein , A. and Bäcker , M. CDTire: A Tire Model for Comfort and Durability Applications Vehicle System Dynamics 45 Sup 1 69 77 2007 https://doi.org/10.1080/00423110801931771
  14. Kabe , K. and Miyashita , N. A New Analytical Tire Model for Cornering Simulation. Part I: Cornering Power and Self-Aligning Torque Power Tire Science and Technology 34 2 84 99 2006 https://doi.org/10.2346/1.2204752
  15. Li , J. , Zhang , Y. , and Yi , J. A Hybrid Physical-Dynamic Tire/Road Friction Model J. Dyn. Sys., Meas., Control. Jan 135 1 011007 2013 https://doi.org/10.1115/1.4006887
  16. Toyoshima , T. and Matsuzawa , T. Study of Physical Characteristic Tire Model about Cornering Stiffness (Proposal of New Tire Model Suitable for Specification Consideration) Transactions of the JSME (in Japanese) 85 880 19 00284 2019 https://doi.org/10.1299/transjsme.19-00284
  17. Castillo , J. , Blanca , A.P. , Cabrera , J. , and Simón , A. An Optical Tire Contact Pressure Test Bench Vehicle System Dynamics 44 3 207 221 2006 https://doi.org/10.1080/00423110500171158
  18. Guthrie , A.G. , Botha , T.R. , and Els , P.S. 3D Contact Patch Measurement inside Rolling Tyres Journal of Terramechanics 69 13 21 2017 https://doi.org/10.1016/j.jterra.2016.09.004
  19. Yunta , J. , Pozuelo , D.G. , Diaz , V. , and Olatunbosun , O. Influence of Camber Angle on Tire Tread Behavior by an On-Board Strain-Based System for Intelligent Tires Measurement 145 631 639 2019 https://doi.org/10.1016/j.measurement.2019.05.105
  20. Kindt , P. , Sas , P. , and Desmet , W. Development and Validation of a Three-Dimensional Ring-Based Structural Tyre Model Journal of Sound and Vibration 326 852 869 2009 https://doi.org/10.1016/j.jsv.2009.05.019
  21. Matsubara , M. , Tsujiuchi , N. , Koizumi , T. , Ito , A. et al. Natural Frequency Analysis of Tire Vibration Using a Thin Cylindrical Shell Model SAE Technical Paper 2015-01-2198 2015 https://doi.org/10.4271/2015-01-2198
  22. Matsubara , M. , Tajiri , D. , Ise , T. , and Kawamura , S. Vibrational Response Analysis of Tires Using a Three-Dimensional Flexible Ring-Based Model Journal of Sound and Vibration 408 368 382 2017 https://doi.org/10.1016/j.jsv.2017.07.041
  23. Shiozawa , Y. and Mouri , H. Proposal of the Road Surface Friction Coefficient Real-Time Estimation Method Journal of Advanced Mechanical Design, Systems, and Manufacturing 12 7 2018 https://doi.org/10.1299/jamdsm.2018jamdsm0118
  24. Sandu , C. , Taheri , S. , Taheri , S. , and Gorsich , D. Hybrid Soft Soil Tire Model (HSSTM). Part I: Tire Material and Structure Modeling Journal of Terramechanics 86 1 13 2019 https://doi.org/10.1016/j.jterra.2019.08.002
  25. Li , B. , Bei , S. , and Zhao , J. Research Method of Tyre Contact Characteristics Based on Modal Analysis Mathematical Problems in Engineering 2017 2017 https://doi.org/10.1155/2017/6769387
  26. Timoshenko , S. , and Kriger , S.W. Theory of Plates and Shells Ehime Nagaki Seihon 1980 474 476
  27. Tielking , J. Plane Vibration Characteristics of a Pneumatic Tire Model SAE Technical Paper 650492 1965 https://doi.org/10.4271/650492
  28. Soedel , W. On the Dynamic Response of Rolling Tires According to Thin Shell Approximations Journal of Sound and Vibration 41 2 233 246 1975 https://doi.org/10.1016/S0022-460X(75)80099-X
  29. Pinnington , R.J. Radial Force Transmission to the Hub from an Unloaded Stationary Tyre Journal of Sound and Vibration 253 5 961 983 2002 https://doi.org/10.1006/jsvi.2001.3945
  30. Yu , X. , Huanga , H. , and Zhang , T. A Theoretical Three-Dimensional Ring Based Model for Tire High-Order Bending Vibration Journal of Sound and Vibration 459 https://doi.org/10.1016/j.jsv.2019.06.027
  31. Matsubara , M. and Kawamura , S. Parameter Identification of a Three-dimensional Flexible Ring-Based Model of a Tire Using Experimental Modal Analysis International Journal of Automotive Engineering 10 2 133 138 2019 https://doi.org/10.20485/jsaeijae.10.2_133

Cited By