Open Access

A Review and Perspective on Particulate Matter Indices Linking Fuel Composition to Particulate Emissions from Gasoline Engines

Journal Article
04-15-01-0001
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 08, 2021 by SAE International in United States
A Review and Perspective on Particulate Matter Indices Linking Fuel
                    Composition to Particulate Emissions from Gasoline Engines
Sector:
Citation: Leach, F., Chapman, E., Jetter, J., Rubino, L. et al., "A Review and Perspective on Particulate Matter Indices Linking Fuel Composition to Particulate Emissions from Gasoline Engines," SAE Int. J. Fuels Lubr. 15(1):3-28, 2022, https://doi.org/10.4271/04-15-01-0001.
Language: English

References

  1. EPA 2021 https://www.epa.gov/automotive-trends/download-automotive-trends-report
  2. Raza , M. et al. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques Energies 11 6 2018 1417 https://doi.org/10.3390/en11061417
  3. Leach , F. et al. Particulate Emissions from a Highly Boosted Gasoline Direct Injection Engine International Journal of Engine Research 19 3 2018 347 359 https://doi.org/10.1177/1468087417710583
  4. Saliba , G. et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts Environmental Science & Technology 51 11 2017 6542 6552 https://doi.org/10.1021/acs.est.6b06509
  5. Braisher , M. , Stone , R. , and Price , P. Particle Number Emissions from a Range of European Vehicles SAE Technical Paper 2010-01-0786 2010 https://doi.org/10.4271/2010-01-0786
  6. Mamakos , A. , Martini , G. , and Manfredi , U. Assessment of the Legislated Particle Number Measurement Procedure for a Euro 5 and a Euro 6 Compliant Diesel Passenger Cars under Regulated and Unregulated Conditions Journal of Aerosol Science 55 2013 31 47 https://doi.org/10.1016/j.jaerosci.2012.07.012
  7. Demuynck , J. , Favre , C. , Bosteels , D. , Hamje , H. et al. Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter SAE Technical Paper 2017-01-0985 2017 https://doi.org/10.4271/2017-01-0985
  8. Andersson , J. , May , J. , Favre , C. , Bosteels , D. et al. On-Road and Chassis Dynamometer Evaluations of Emissions from Two Euro 6 Diesel Vehicles SAE Int. J. Fuels Lubr. 7 3 2014 919 934 https://doi.org/10.4271/2014-01-2826
  9. Yang , J. et al. Impacts of Gasoline Aromatic and Ethanol Levels on the Emissions from GDI Vehicles: Part 2. Influence on Particulate Matter, Black Carbon, and Nanoparticle Emissions Fuel 252 2019 812 820 https://doi.org/10.1016/j.fuel.2019.04.144
  10. Yang , J. et al. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles Environmental Science & Technology 52 5 2018 3275 3284 https://doi.org/10.1021/acs.est.7b05641
  11. Lubkowitz , J. and Meneghini , R. 2018 http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-Project-AVFL-29-Final-Report_June-2018-1.pdf
  12. Coordinating Research Council 2020 http://3mpm51mqb7ryj2j12n04r01b-wpengine.netdna-ssl.com/wp-content/uploads/2020/10/Final-2020-CRC-Annual-Report.pdf
  13. Economic Commission for Europe of the United Nations (UN/ECE) 2006 https://op.europa.eu/en/publication-detail/-/publication/2f8f0ce5-66fb-4a38-ae68-558ae1b04a5f/language-en
  14. US Environmental Protection Agency 2005 https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr1065_main_02.tpl
  15. Hu , S. , Zhang , S. , Sardar , S. , Chen , S. et al. Evaluation of Gravimetric Method to Measure Light-Duty Vehicle Particulate Matter Emissions at Levels below One Milligram per Mile (1 mg/mile) SAE Technical Paper 2014-01-1571 2014 https://doi.org/10.4271/2014-01-1571
  16. Andersson , J. et al. 2007
  17. Giechaskiel , B. 2018 https://op.europa.eu/en/publication-detail/-/publication/1cd9b5ef-07cd-11e8-b8f5-01aa75ed71a1
  18. Giechaskiel , B. , Manfredi , U. , and Martini , G. Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey SAE Int. J. Fuels Lubr. 7 3 2014 950 964 https://doi.org/10.4271/2014-01-2834
  19. Giechaskiel , B. et al. Investigation of Vehicle Exhaust Sub-23 nm Particle Emissions Aerosol Science and Technology 51 5 2017 626 641 https://doi.org/10.1080/02786826.2017.1286291
  20. Alanen , J. et al. The Formation and Physical Properties of the Particle Emissions from a Natural Gas Engine Fuel 162 2015 155 161 https://doi.org/10.1016/j.fuel.2015.09.003
  21. Rönkkö , T. et al. Vehicle Engines Produce Exhaust Nanoparticles Even When Not Fueled Environmental Science & Technology 48 3 2014 2043 2050 https://doi.org/10.1021/es405687m
  22. Leach , F. , Lewis , A. , Akehurst , S. , Turner , J. et al. Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine SAE Technical Paper 2019-24-0153 2019 https://doi.org/10.4271/2019-24-0153
  23. Samaras , Z. , Andersson , J. , Bergmann , A. , Hausberger , S. et al. Measuring Automotive Exhaust Particles Down to 10 nm SAE Int. J. Adv. & Curr. Prac. in Mobility 3 1 2021 539 550 https://doi.org/10.4271/2020-01-2209
  24. PEMs4Nano 2019 http://www.pems4nano.eu
  25. Down To Ten 2019 http://www.downtoten.com/
  26. SUREAL-23 2019 http://sureal-23.cperi.certh.gr
  27. Khalek , I. , Bougher , T. , and Jetter , J. Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels SAE Int. J. Fuels Lubr. 3 2 2010 623 637 https://doi.org/10.4271/2010-01-2117
  28. Maricq , M. , Szente , J. , Loos , M. , and Vogt , R. Motor Vehicle PM Emissions Measurement at LEV III Levels SAE Int. J. Engines 4 1 2011 597 609 https://doi.org/10.4271/2011-01-0623
  29. Maricq , M.M. et al. Influence of Mileage Accumulation on the Particle Mass and Number Emissions of Two Gasoline Direct Injection Vehicles Environmental Science & Technology 47 20 2013 11890 11896 https://doi.org/10.1021/es402686z
  30. Chan , T. Black Carbon Particle Emissions from GDI Vehicles Operating on Different Fuels Workshop on Effects of Fuel Composition on PM Chicago 2016 https://www.healtheffects.org/sites/default/files/Chan-Ethanol_fuel_effect_on_BC_emissions.pdf
  31. Yamada , H. , Inomata , S. , and Tanimoto , H. Particle and VOC Emissions from Stoichiometric Gasoline Direct Injection Vehicles and Correlation between Particle Number and Mass Emissions Emission Control Science and Technology 3 2 2017 135 141 https://doi.org/10.1007/s40825-016-0060-0
  32. Joshi , A. and Johnson , T.V. Gasoline Particulate Filters—A Review Emission Control Science and Technology 4 4 2018 219 239 https://doi.org/10.1007/s40825-018-0101-y
  33. Ratcliff , M. , Burton , J. , Sindler , P. , Christensen , E. et al. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine SAE Int. J. Fuels Lubr. 9 1 2016 59 70 https://doi.org/10.4271/2016-01-0705
  34. Ratcliff , M.A. et al. Impact of Ethanol Blending into Gasoline on Aromatic Compound Evaporation and Particle Emissions from a Gasoline Direct Injection Engine Applied Energy 250 2019 1618 1631 https://doi.org/10.1016/j.apenergy.2019.05.030
  35. EU 2017
  36. Giechaskiel , B. et al. Framework for the Assessment of PEMS (Portable Emissions Measurement Systems) Uncertainty Environmental Research 166 2018 251 260 https://doi.org/10.1016/j.envres.2018.06.012
  37. Mock , P. 2017 https://theicct.org/publications/real-driving-emissions-test-procedure-exhaust-gas-pollutant-emissions-cars-and-light
  38. Clairotte , M. et al. 2018 https://op.europa.eu/en/publication-detail/-/publication/939fdd7f-93a3-11e8-8bc1-01aa75ed71a1/language-en
  39. Engeljehringer , K. Emission Regulation Trends: Overcoming BS6 & RDE Challenges with 2020 Getting Closer AVL India Seminar 2018 https://www.avl.com/documents/10138/8665616/02+AVL+India+Seminar+May+2018_Regulation+Trends_Engeljehringer.pdf
  40. Ball , D. , Meng , X. , and Weiwei , G. Vehicle Emission Solutions for China 6b and Euro 7 SAE Technical Paper 2020-01-0654 2020 https://doi.org/10.4271/2020-01-0654
  41. Leach , F. et al. Predicting the Particulate Matter Emissions from Spray-Guided Gasoline Direct-Injection Spark Ignition Engines Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231 6 2017 717 730 https://doi.org/10.1177/0954407016657453
  42. US Environmental Protection Agency 1996 https://www.govinfo.gov/content/pkg/CFR-2014-title40-vol17/pdf/CFR-2014-title40-vol17-sec80-161.pdf
  43. Top Tier Detergent Gasoline Deposit Control Performance Standard 2019 https://www.toptiergas.com/documents/18/TOP_TIER_Detergent_Gasoline_Performance_Standard_revF_2019-12.pdf
  44. Monroe , R. , Studzinski , W. , Parsons , J. , La , C. et al. Engine Particulate Emissions as a Function of Gasoline Deposit Control Additive SAE Int. J. Fuels Lubr. 14 1 2021 3 11 https://doi.org/10.4271/04-14-01-0001
  45. Chapman , E. , Studzinski , W. , Monroe , R. , Tolou , A. et al. Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine SAE Technical Paper 2021-01-0490 2021 https://doi.org/10.4271/2021-01-0490
  46. Richter , H. and Howard , J.B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways Progress in Energy and Combustion Science 26 4 2000 565 608 https://doi.org/10.1016/S0360-1285(00)00009-5
  47. Barrientos , E.J. et al Effects of Oxygenates Molecular Structure on the Sooting Tendency and PM Emissions of Ethanol-Gasoline and Biodiesel-Diesel Blends ASME 2012 International Mechanical Engineering Congress and Exposition Houston, TX, USA 2012 https://doi.org/10.1115/IMECE2012-85745
  48. Olson , D.B. , Pickens , J.C. , and Gill , R.J. The Effects of Molecular Structure on Soot Formation II Diffusion flames. Combustion and Flame 62 1 1985 43 60 https://doi.org/10.1016/0010-2180(85)90092-6
  49. Frenklach , M. and Wang , H. Detailed Modeling of Soot Particle Nucleation and Growth Symposium (International) on Combustion 23 1 1991 1559 1566 https://doi.org/10.1016/S0082-0784(06)80426-1
  50. Frenklach , M. Reaction Mechanism of Soot Formation in Flames Physical Chemistry Chemical Physics 4 11 2002 2028 2037 https://doi.org/10.1039/B110045A
  51. Xu , F. , Sunderland , P.B. , and Faeth , G.M. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure Combustion and Flame 108 4 1997 471 493 https://doi.org/10.1016/S0010-2180(96)00200-3
  52. Appel , J. , Bockhorn , H. , and Frenklach , M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons Combustion and Flame 121 1 2000 122 136 https://doi.org/10.1016/S0010-2180(99)00135-2
  53. Blanquart , G. , Pepiot-Desjardins , P. , and Pitsch , H. Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels with Emphasis on Soot Precursors Combustion and Flame 156 3 2009 588 607 https://doi.org/10.1016/j.combustflame.2008.12.007
  54. Calcote , H.F. and Manos , D.M. Effect of Molecular Structure on Incipient Soot Formation Combustion and Flame 49 1-3 1983 289 304 https://doi.org/10.1016/0010-2180(83)90172-4
  55. Hunt , R.A. Relation of Smoke Point to Molecular Structure Industrial & Engineering Chemistry 45 3 1953 602 606 https://doi.org/10.1021/ie50519a039
  56. Olson , D.B. and Pickens , J.C. The Effects of Molecular Structure on Soot Formation, I. Soot Thresholds in Premixed Flames Combustion and Flame 57 2 1984 199 208 https://doi.org/10.1016/0010-2180(84)90057-9
  57. Pepiot-Desjardins , P. et al. Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels Combustion and Flame 154 1 2008 191 205 https://doi.org/10.1016/j.combustflame.2008.03.017
  58. Barrientos , E.J. , Lapuerta , M. , and Boehman , A.L. Group Additivity in Soot Formation for the Example of C-5 Oxygenated Hydrocarbon Fuels Combustion and Flame 160 8 2013 1484 1498 https://doi.org/10.1016/j.combustflame.2013.02.024
  59. ASTM International 2008
  60. McEnally , C.S. and Pfefferle , L.D. Improved Sooting Tendency Measurements for Aromatic Hydrocarbons and Their Implications for Naphthalene Formation Pathways Combustion and Flame 148 4 2007 210 222 https://doi.org/10.1016/j.combustflame.2006.11.003
  61. Das , D.D. et al. Sooting Tendencies of Diesel Fuels, Jet Fuels, and Their Surrogates in Diffusion Flames Fuel 197 2017 445 458 https://doi.org/10.1016/j.fuel.2017.01.099
  62. Das , D.D. et al. Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale Combustion and Flame 190 2018 349 364 https://doi.org/10.1016/j.combustflame.2017.12.005
  63. McEnally , C.S. and Pfefferle , L.D. Sooting Tendencies of Oxygenated Hydrocarbons in Laboratory-Scale Flames Environmental Science & Technology 45 6 2011 2498 2503 https://doi.org/10.1021/es103733q
  64. Das , D.D. , McEnally , C.S. , and Pfefferle , L.D. Sooting Tendencies of Unsaturated Esters in Nonpremixed Flames Combustion and Flame 162 4 2015 1489 1497 https://doi.org/10.1016/j.combustflame.2014.11.012
  65. Aikawa , K. , Sakurai , T. , and Jetter , J. Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions SAE Int. J. Fuels Lubr. 3 2 2010 610 622 https://doi.org/10.4271/2010-01-2115
  66. Li , L. and Sunderland , P.B. An Improved Method of Smoke Point Normalization Combustion Science and Technology 184 6 2012 829 841 https://doi.org/10.1080/00102202.2012.670333
  67. St. John , P.C. et al. A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure Energy & Fuels 31 9 2017 9983 9990 https://doi.org/10.1021/acs.energyfuels.7b00616
  68. Aikawa , K. and Jetter , J.J. Impact of Gasoline Composition on Particulate Matter Emissions from a Direct-Injection Gasoline Engine: Applicability of the Particulate Matter Index International Journal of Engine Research 15 3 2014 298 306 https://doi.org/10.1177/1468087413481216
  69. ASTM International 2014
  70. ASTM International 2019
  71. Cochran , J. et al. Estimating Particulate Matter Index for Gasoline with Fast Gas Chromatography—Vacuum Ultraviolet Spectroscopy Gulf Coast Conference Galveston, TX, USA 2018
  72. Yao , C. et al. Experimental Study of the Effect of Heavy Aromatics on the Characteristics of Combustion and Ultrafine Particle in DISI Engine Fuel 203 2017 290 297 https://doi.org/10.1016/j.fuel.2017.04.080
  73. Fatouraie , M. , Frommherz , M. , Mosburger , M. , Chapman , E. et al. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine SAE Technical Paper 2018-01-0358 2018 https://doi.org/10.4271/2018-01-0358
  74. Canadian General Standards Board 2016 publications.gc.ca/pub?id=9.838469&sl=0
  75. Sanders , W.N. and Maynard , J.B. Capillary Gas Chromatographic Method for Determining the C3-C12 Hydrocarbons in Full-Range Motor Gasolines Analytical Chemistry 40 3 1968 527 535 https://doi.org/10.1021/ac60259a046
  76. ASTM International 2016
  77. ASTM International 2017
  78. Scanlon , J.T. and Willis , D.E. Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept Journal of Chromatographic Science 23 8 1985 333 340 https://doi.org/10.1093/chromsci/23.8.333
  79. Ghosh , P. , Hickey , K.J. , and Jaffe , S.B. Development of a Detailed Gasoline Composition-Based Octane Model Industrial & Engineering Chemistry Research 45 1 2006 337 345 https://doi.org/10.1021/ie050811h
  80. Spieksma , W. Prediction of ASTM Method D86 Distillation of Gasolines and Naphthas according to the Fugacity-Filmmodel from Gas Chromatographic Detailed Hydocarbon Analysis Journal of Chromatographic Science 36 9 1998 467 475 https://doi.org/10.1093/chromsci/36.9.467
  81. Chupka , G. , Christensen , E. , Fouts , L. , Alleman , T. et al. Heat of Vaporization Measurements for Ethanol Blends Up To 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines SAE Int. J. Fuels Lubr. 8 2 2015 251 263 https://doi.org/10.4271/2015-01-0763
  82. Crawford , R. and Lyons , J. 2019 http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-RW-107-Final-Report_2019-04-15.pdf
  83. Schoenmakers , P.J. et al. Comparison of Comprehensive Two-Dimensional Gas Chromatography and Gas Chromatography—Mass Spectrometry for the Characterization of Complex Hydrocarbon Mixtures Journal of Chromatography A 892 1 2000 29 46 https://doi.org/10.1016/S0021-9673(00)00744-5
  84. Seeley , J.V. et al. Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography Analytical Chemistry 79 5 2007 1840 1847 https://doi.org/10.1021/ac061881g
  85. ASTM International 2019
  86. Walsh , P. , Garbalena , M. , and Schug , K.A. Rapid Analysis and Time Interval Deconvolution for Comprehensive Fuel Compound Group Classification and Speciation Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy Analytical Chemistry 88 22 2016 11130 11138 https://doi.org/10.1021/acs.analchem.6b03226
  87. ASTM International 2018
  88. Santos , I.C. and Schug , K.A. Recent Advances and Applications of Gas Chromatography Vacuum Ultraviolet Spectroscopy Journal of Separation Science 40 1 2017 138 151 https://doi.org/10.1002/jssc.201601023
  89. Dunkle , M.N. et al. Quantification of the Composition of Liquid Hydrocarbon Streams: Comparing the GC-VUV to DHA and GCxGC Journal of Chromatography A 1587 2019 239 246 https://doi.org/10.1016/j.chroma.2018.12.026
  90. Wittmann , J. and Menger , L. Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions SAE Int. J. Fuels Lubr. 10 3 2017 690 697 https://doi.org/10.4271/2017-01-9380
  91. Chapman , E. , Winston-Galant , M. , Geng , P. , and Konzack , A. Global Market Gasoline Range Fuel Review Using Fuel Particulate Emission Correlation Indices SAE Technical Paper 2016-01-2251 2016 https://doi.org/10.4271/2016-01-2251
  92. Chapman , E. , Winston-Galant , M. , Geng , P. , and Pryor , S. Development of an Alternative Predictive Model for Gasoline Vehicle Particulate Matter and Particulate Number SAE Technical Paper 2019-01-1184 2019 https://doi.org/10.4271/2019-01-1184
  93. Chapman , E. , Geng , P. , and Konzack , A. Global Market Gasoline Quality Review: Five Year Trends in Particulate Emission Indices SAE Technical Paper 2021-01-0623 2021 https://doi.org/10.4271/2021-01-0623
  94. Chapman , E. , Salyers , J. , Wispinski , D. , Scussel , M. et al. Comparison of the Particulate Matter Index and Particulate Evaluation Index Numbers Calculated by Detailed Hydrocarbon Analysis by Gas Chromatography (Enhanced ASTM D6730) and Vacuum Ultraviolet Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Analysis (ASTM D8071) SAE Technical Paper 2021-01-5070 2021 https://doi.org/10.4271/2021-01-5070
  95. Sobotowski , R. , Butler , A. , and Guerra , Z. A Pilot Study of Fuel Impacts on PM Emissions from Light-Duty Gasoline Vehicles SAE Int. J. Fuels Lubr. 8 1 2015 214 233 https://doi.org/10.4271/2015-01-9071
  96. Butler , A. , Sobotowski , R. , Hoffman , G. , and Machiele , P. Influence of Fuel PM Index and Ethanol Content on Particulate Emissions from Light-Duty Gasoline Vehicles SAE Technical Paper 2015-01-1072 2015 https://doi.org/10.4271/2015-01-1072
  97. St. John , P.C. , Kim , S. , and McCormick , R.L. Development of a Data-Derived Sooting Index Including Oxygen-Containing Fuel Components Energy & Fuels 33 10 2019 10290 10296 https://doi.org/10.1021/acs.energyfuels.9b02458
  98. Morgan , P. et al. 2017 http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC_2017-3-21_03-20955_E94-2FinalReport-Rev1b.pdf
  99. Lemaire , R. , Boudreau , A. , and Seers , P. Performance and Emissions of a DISI Engine Fueled with Gasoline/Ethanol and Gasoline/C-4 Oxygenate Blends—Development of a PM Index Correlation for Particulate Matter Emission Assessment Fuel 241 2019 1172 1183 https://doi.org/10.1016/j.fuel.2018.12.007
  100. Lemaire , R. , Lapalme , D. , and Seers , P. Analysis of the Sooting Propensity of C-4 and C-5 Oxygenates: Comparison of Sooting Indexes Issued from Laser-Based Experiments and Group Additivity Approaches Combustion and Flame 162 9 2015 3140 3155 https://doi.org/10.1016/j.combustflame.2015.03.018
  101. Leach , F. , Stone , R. , and Richardson , D. The Influence of Fuel Properties on Particulate Number Emissions from a Direct Injection Spark Ignition Engine SAE Technical Paper 2013-01-1558 2013 https://doi.org/10.4271/2013-01-1558
  102. ASTM International 2020
  103. Kosal , N. , Bhairi , A. , and Ali , M.A. Determination of Hydrocarbon Types in Naphthas, Gasolines and Kerosenes: A Review and Comparative Study of Different Analytical Procedures Fuel 69 8 1990 1012 1019 https://doi.org/10.1016/0016-2361(90)90013-G
  104. EN 13016:2007
  105. Leach , F.C.P. et al. The Effect of Fuel Composition on Particulate Emissions from a Highly Boosted GDI Engine—An Evaluation of Three Particulate Indices Fuel 252 2019 598 611 https://doi.org/10.1016/j.fuel.2019.04.115
  106. Leach , F. , Knorsch , T. , Laidig , C. , and Wiese , W. A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines SAE Technical Paper 2018-01-1710 2018 https://doi.org/10.4271/2018-01-1710
  107. Chapman , E. , Winston-Galant , M. , Geng , P. , Latigo , R. et al. Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI) SAE Technical Paper 2016-01-2250 2016 https://doi.org/10.4271/2016-01-2250
  108. Wu , T. et al. A Reduced PM Index for Evaluating the Effect of Fuel Properties on the Particulate Matter Emissions from Gasoline Vehicles Fuel 253 2019 691 702 https://doi.org/10.1016/j.fuel.2019.05.059
  109. Ben Amara , A. , Tahtouh , T. , Ubrich , E. , Starck , L. et al. Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition SAE Technical Paper 2018-01-1741 2018 https://doi.org/10.4271/2018-01-1741
  110. Moriya , H. Fuel Property Influence on Exhaust Emissions - Simplified PM Index SAE-China Congress & Exhibition Shanghai 2016
  111. Wu , T.Y. et al. Predicting Formula of Particulate Matter Emission from Gasoline Engines Based on Fuel Properties Acta Scientiae Circumstantiae 40 1 2020 102 110 https://doi.org/10.13671/j.hjkxxb.2019.0304
  112. Velji , A. , Yeom , K. , Wagner , U. , Spicher , U. et al. Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques SAE Technical Paper 2010-01-0352 2010 https://doi.org/10.4271/2010-01-0352
  113. Fatouraie , M. , Wooldridge , M. , and Wooldridge , S. In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine SAE Int. J. Fuels Lubr. 6 1 2013 1 10 https://doi.org/10.4271/2013-01-0259
  114. Fatouraie , M. et al. Effects of Ethanol on In-Cylinder and Exhaust Gas Particulate Emissions of a Gasoline Direct Injection Spark Ignition Engine Energy & Fuels 29 5 2015 3399 3412 https://doi.org/10.1021/ef502758y
  115. Yue , Z. and Som , S. Fuel Property Effects on Spray Atomization Process in Gasoline Direct Injection SAE Technical Paper 2020-01-0329 2020 https://doi.org/10.4271/2020-01-0329
  116. Ding , C.-P. et al. Effect of Engine Conditions and Injection Timing on Piston-Top Fuel Films for Stratified Direct-Injection Spark-Ignition Operation Using E30 International Journal of Engine Research 21 2 2020 302 318 https://doi.org/10.1177/1468087419869785
  117. Park , S.H. et al. Atomization and Spray Characteristics of Bioethanol and Bioethanol Blended Gasoline Fuel Injected through a Direct Injection Gasoline Injector International Journal of Heat and Fluid Flow 30 6 2009 1183 1192 https://doi.org/10.1016/j.ijheatfluidflow.2009.07.002
  118. Zeng , W. et al. Atomization and Vaporization for Flash-Boiling Multi-Hole Sprays with Alcohol Fuels Fuel 95 2012 287 297 https://doi.org/10.1016/j.fuel.2011.08.048
  119. Huang , Y. et al. Spray and Evaporation Characteristics of Ethanol and Gasoline Direct Injection in Non-Evaporating, Transition and Flash-Boiling Conditions Energy Conversion and Management 108 2016 68 77 https://doi.org/10.1016/j.enconman.2015.10.081
  120. Fioroni , G. , Christensen , E. , Fouts , L. , and McCormick , R. Heat of Vaporization and Species Evolution during Gasoline Evaporation Measured by DSC/TGA/MS for Blends of C1 to C4 Alcohols in Commercial Gasoline Blendstocks SAE Technical Paper 2019-01-0014 2019 https://doi.org/10.4271/2019-01-0014
  121. Burke , S. , Ratcliff , M. , McCormick , R. , Rhoads , R. et al. Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions SAE Int. J. Fuels Lubr. 10 1 2017 69 81 https://doi.org/10.4271/2017-01-0581
  122. Rubino , L. , Thier , D. , Schumann , T. , Guettler , S. et al. Fundamental Study of GPF Performance on Soot and Ash Accumulation over Artemis Urban and Motorway Cycles - Comparison of Engine Bench Results with GPF Durability Study on Road SAE Technical Paper 2017-24-0127 2017 https://doi.org/10.4271/2017-24-0127
  123. Roth , P. et al. Catalyzed Gasoline Particulate Filters Reduce Secondary Organic Aerosol Production from Gasoline Direct Injection Vehicles Environmental Science & Technology 53 6 2019 3037 3047 https://doi.org/10.1021/acs.est.8b06418
  124. Yoshioka , F. , Kato , K. , Aoki , T. , Makino , M. et al. Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions SAE Technical Paper 2019-01-0980 2019 https://doi.org/10.4271/2019-01-0980
  125. Boehman , A.L. , Song , J. , and Alam , M. Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters Energy & Fuels 19 5 2005 1857 1864 https://doi.org/10.1021/ef0500585
  126. Williams , A. , McCormick , R. , Hayes , R. , Ireland , J. et al. Effect of Biodiesel Blends on Diesel Particulate Filter Performance SAE Technical Paper 2006-01-3280 2006 https://doi.org/10.4271/2006-01-3280
  127. Crawford , R. and Lyons , J. 2021 https://3mpm51mqb7ryj2j12n04r01b-wpengine.netdna-ssl.com/wp-content/uploads/2021/03/CRC_RW107-2_2021.03.26.pdf
  128. Barrientos , E.J. et al. Particulate Matter Indices Using Fuel Smoke Point for Vehicle Emissions with Gasoline, Ethanol Blends, and Butanol Blends Combustion and Flame 167 2016 308 319 https://doi.org/10.1016/j.combustflame.2016.01.034

Cited By