This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Air Motion Induced by Ultra-High Injection Pressure Sprays for Gasoline Direct Injection Engines

Journal Article
04-13-03-0014
ISSN: 1946-3952, e-ISSN: 1946-3960
Published September 17, 2020 by SAE International in United States
Air Motion Induced by Ultra-High Injection Pressure Sprays for Gasoline Direct Injection Engines
Sector:
Citation: Yamaguchi, A., Koopmans, L., Helmantel, A., Dillner, J. et al., "Air Motion Induced by Ultra-High Injection Pressure Sprays for Gasoline Direct Injection Engines," SAE Int. J. Fuels Lubr. 13(3):223-235, 2020, https://doi.org/10.4271/04-13-03-0014.
Language: English

References

  1. Saliba , G. , Saleh , R. , Zhao , Y. , Prest , A. et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicles Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts Environmental Science and Technology 51 11 6542 6552 2017 https://doi.org/10.1021/acs.est.6b06509
  2. Braisher , M. , Stone , R. , and Price , P. Particle Number Emissions from a Range of European Vehicles SAE Technical Paper 2010-01-0786 2010 https://doi.org/10.4271/2010-01-0786
  3. Leach , F. , Knorsch , T. , Laidig , C. , and Wiese , W. A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines SAE Technical Paper 2018-01-1710 2018 https://doi.org/10.4271/2018-01-1710
  4. Pauer , T. , Yilmaz , H. , Zumbrägel , J. , and Schünemann , E. New Generation Bosch Gasoline Direct-Injection Systems MTZ Worldwide 78 7 16 23 2017 https://doi.org/10.1007/s38313-017-0053-6
  5. Piock , W. , Befrui , B. , Berndorfer , A. , and Hoffmann , G. Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions SAE Int. J. Engines 8 2 464 473 2015 https://doi.org/10.4271/2015-01-0746
  6. Peer , J. , Backers , F. , Sauerland , H. , Härtl , M. et al. Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System SAE Int. J. Engines 9 4 2301 2311 2016 https://doi.org/10.4271/2016-01-9046
  7. Stadler , A. , Brunner , R. , Wachtmeister , G. , and Saurerland , H. Experimental Investigations on High Pressure Gasoline Injection up to 800 bar for Different Combustion Modes MTZ Worldwide 80 3 52 57 2019
  8. Postrioti , L. , Cavicchi , A. , Brizi , G. , Berni , F. et al. Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System SAE Technical Paper 2018-01-0271 2018 https://doi.org/10.4271/2018-01-0271
  9. Yamaguchi , A. , Koopmans , L. , Helmantel , A. , Karrholm , F. et al. Spray Characterization of Gasoline Direct Injection Sprays Under Fuel Injection Pressure up to 150 MPa with Different Nozzle Geometries SAE Technical Paper 2019-01-0063 2019 https://doi.org/10.4271/2019-01-0063
  10. Wadekar , S. , Yamaguchi , A. , and Oevermann , M. Large-Eddy Simulation on the Effects of Fuel Injection Pressure on the Gasoline Spray Characteristics SAE Technical Paper 2019-01-0060 2019 https://doi.org/10.4271/2019-01-0060
  11. Nishida , K. , Zhu , J. , Leng , X. , and He , Z. Effects of Micro-Hole Nozzle and Ultra-High Injection Pressure on Air Entrainment, Liquid Penetration, Flame Lift-Off and Soot Formation of Diesel Spray Flame Int. J. Engine Research 18 1-2 51 65 2017 https://doi.org/10.1177/1468087416688805
  12. Prosperi , B. , Delay , G. , Bazile , R. , Helie , J. et al. FPIV Study of Gas Entrainment by a Hollow Cone Spray Submitted to Variable Density Experiments in Fluids 43 2-3 315 327 2007 https://doi.org/10.1007/s00348-007-0304-4
  13. Zhang , M. , Xu , M. , and Hung , D.L.S. Simultaneous Two-Phase Flow Measurement of Spray Mixing Process by Means of High-Speed Two-Color PIV Measurement Science and Technology 25 095204 2014 https://doi.org/10.1088/0957-0233/25/9/095204
  14. Khan , M.M. , Hélie , J. , Gorokhovski , M. , and Sheikh , N.A. Air Entrainment in High Pressure Multihole Gasoline Direct Injection Sprays Journal of Applied Fluid Mechanics 10 4 1223 1234 2017 https://doi.org/10.18869/acadpub.jafm.73.241.27628
  15. Seibel , C. , Gartung , K. , Arndt , S. , and Weigand , B. Detailed Analysis of Spray Structure and Air Entrainment in GDI Sprays Using a Tomographic Approach ICLASS Sorrento, Italy 2003
  16. Sepret , V. , Bazile , R. , Marchal , M. , and Couteau , G. Effect of Ambient Density and Orifice Diameter on Gas Entrainment by a Single-Hole Diesel Spray Experiment in Fluids 49 6 1293 1305 2010 https://doi.org/10.1007/s00348-010-0869-1
  17. Choi , W. , and Choi , B.C. Estimation of the Air Entrainment Characteristics of a Transient High-Pressure Diesel Spray Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219 8 1025 1036 2005 https://doi.org/10.1243/095440705X34630
  18. Wu , S. , Xu , M. , Yang , S. , and Yin , P. Contrary Effects of Nozzle Length on Spray Primary Breakup under Subcooled and Superheated Conditions SAE Technical Paper 2018-01-0302 2018 https://doi.org/10.4271/2018-01-0302
  19. Wetzel , J. , Henn , M. , Gotthardt , M. , and Rottengruber , H. Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries SAE Technical Paper 2015-01-0911 2015 https://doi.org/10.4271/2015-01-0911
  20. Nouri , J.M. , Mitroglou , N. , Yan , Y. , and Arcoumanis , C. Internal Flow and Cavitation in a Multi-Hole Injector for Gasoline Direct-Injection Engines SAE Technical Paper 2007-01-1405 2007 https://doi.org/10.4271/2007-01-1405
  21. Befrui , B. , Corbinelli , G. , Spiekermann , P. , Shost , M. et al. Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray SAE Int. J. Fuels Lubr. 5 2 620 636 2012 https://doi.org/10.4271/2012-01-0392
  22. He , Z. , Shao , Z. , Wang , Q. , Zhong , W. et al. Experimental Study of Cavitating Flow inside Vertical Multi-Hole Nozzles with Different Length-Diameter Ratios Using Diesel and Biodiesel Experimental Thermal and Fluid Science 60 252 262 2015 https://doi.org/10.1016/j.expthermflusci.2014.09.015
  23. Chen , Z. , He , Z. , Shang , W. , Duan , L. et al. Experimental Study on the Effect of Nozzle Geometry on String Cavitation in Real-Size Optical Diesel Nozzles and Spray Characteristics Fuel 232 562 571 2018 https://doi.org/10.1016/j.fuel.2018.05.132
  24. Anvari , S. , Taghavifar , H. , Khaliilarya , S. , Jafarmadar , S. et al. Numerical Simulation of Diesel Injector Nozzle Flow and In-Cylinder Spray Evolution Applied Mathematical Modeling 40 19-20 8617 8629 2016 https://doi.org/10.1016/j.apm.2016.05.017
  25. Raffel , M. , Willert , C. , Scarano , F. , Kähler , C. et al. Particle Image Velocimetry: A Practical Guide Cham Springer 2018 9783319688527
  26. Melling , A. Tracer Particles and Seeding for Particle Image Velocimetry Measurement Science and Technology 8 12 1406 1416 1997 https://doi.org/10.1088/0957-0233/8/12/005
  27. Samimy , M. , and Lele , S.K. Motion of Particles with Inertia in a Compressible Free Shear Layer Physics of Fluids A: Fluid Dynamics 3 8 1915 1923 1991 https://doi.org/10.1063/1.857921
  28. Tomishima , H. , Matsumoto , T. , Oki , M. , and Nagata , T. The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy SAE Technical Paper 2008-28-0017 2008 https://doi.org/10.4271/2008-28-0017

Cited By