This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions

Journal Article
04-13-01-0001
ISSN: 1946-3952, e-ISSN: 1946-3960
Published November 19, 2019 by SAE International in United States
Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions
Sector:
Citation: Pulga, L., Bianchi, G., Ricci, M., Cazzoli, G. et al., "Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions," SAE Int. J. Fuels Lubr. 13(1):5-17, 2020, https://doi.org/10.4271/04-13-01-0001.
Language: English

References

  1. Falfari , S. , Bianchi , G.M. , Cazzoli , G. , Forte , C. et al. Basics on Water Injection Process for Gasoline Engines Energy Procedia 148 50 57 2018 10.1016/j.egypro.2018.08.018
  2. Cavina , N. , Rojo , N. , Businaro , A. , Brusa , A. et al. Investigation of Water Injection Effects on Combustion Characteristics of a GDI TC Engine SAE Int. J. Engines 10 4 2209 2218 2017 10.4271/2017-24-0052
  3. Colin , O. and Benkenida , A. The 3-Zone Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion Oil Gas Sci. Technol.-Rev. IFP 59 6 593 609
  4. Dekena , M. and Peters , N. Combustion Modeling with the G-Equation Oil Gas Sci. Technol. 54 265 270 1999
  5. Poinsot , T. and Veynante , D. Theoretical and Numerical Combustion Edwards 2001 9781930217058
  6. Cazzoli , G. , Forte , C. , Bianchi , G. , Falfari , S. et al. A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines SAE Technical Paper 2017-24-0035 2017 10.4271/2017-24-0035
  7. Del Pecchia , M. , Breda , S. , D’Adamo , A. , Fontanesi , S. et al. Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine SAE Int. J. Engines 11 6 715 741 2018 10.4271/2018-01-0174
  8. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  9. Metghalchi , M. and Keck , J. Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature Combustion and Flame 48 C 191 210 1982
  10. Gülder , Ö. Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures Symposium (International) on Combustion 19 1 275 281 1982
  11. Cazzoli , G. , Falfari , S. , Bianchi , G.M. , and Forte , C. Development of a Chemical-Kinetic Database for the Laminar Flame Speed under GDI and Water Injection Engine Conditions Energy Procedia 148 154 161 2018 10.1016/j.egypro.2018.08.043
  12. Cantera http://www.cantera.org 2019
  13. Ranzi , E. , Frassoldati , A. , Grana , R. , Cuoci , A. et al. Hierarchical and Comparative Kinetic Modelling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels Progress in Energy and Combustion Science 38 4 468 501 2012 10.1016/j.pecs.2012.03.004
  14. Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemical Kinetics 46 9 512 542 2014 10.1002/kin.20867
  15. Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proceedings of the Combustion Institute 33 193 200 2011
  16. Dirrenberger , P. , Glaude , P.A. , Bounaceur , R. , Le Gall , H. et al. Laminar Burning Velocity of Gasolines with Addition of Ethanol Fuel 115 162 169 2014 10.1016/j.fuel.2013.07.015
  17. Jerzembeck , S. , Peters , N. , Pepiot-Desjardins , P. , and Pitsch , H. Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation Combustion and Flame 156 2 292 301 2009 10.1016/j.combustflame.2008.11.009
  18. Mannaa , O. , Mansour , M.S. , Roberts , W.L. , and Chung , S.H. Laminar Burning Velocities at Elevated Pressures for Gasoline and Gasoline Surrogates Associated with RON Combustion and Flame 162 6 2311 2321 2015 10.1016/j.combustflame.2015.01.004
  19. Mazas , A. , Fiorina , B. , Lacoste , D. , and Schuller , T. Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames Combustion and Flame 158 12 2428 2440 2011 10.1016/j.combustflame.2011.05.014
  20. Hastie , T. , Tibshirani , R. , and Friedman , J. The Elements of Statistical Learning: Data Mining, Inference and Prediction New York Springer 2009
  21. Rasmussen , C.E. and Williams , C.K.I. Gaussian Processes for Machine Learning Cambridge, MA MIT Press 2006
  22. Geurts , P. , Ernst , D. , and Wehenkel , L. Extremely Randomized Trees Machine Learning 63 1 3 42 2006
  23. Zhu , J. , Zou , H. , Rosset , S. , and Hastie , T. 2009
  24. Freund , Y. and Schapire , R. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting Berlin Springer 1995
  25. Kingma , D.P. and BA , J.L. Adam: A Method for Stochastic Optimization International Conference on Learning Representations Banff 2014
  26. Yosinski , J. , Clune , J. , Bengio , Y. , and Lipson , H. How Transferable Are Features in Deep Neural Networks? NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems Montreal 2014
  27. Blint , R.J. The Relationship of the Laminar Flame Width to Flame Speed Combustion Science and Technology 49 1-2 79 92 10.1080/00102208608923903

Cited By