This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel-Economy Performance Analysis with Exhaust Heat Recovery System on Gasoline Engine

Journal Article
03-15-06-0045
ISSN: 1946-3936, e-ISSN: 1946-3944
Published February 08, 2022 by SAE International in United States
Fuel-Economy Performance Analysis with Exhaust Heat Recovery System
                    on Gasoline Engine
Sector:
Citation: Kumar, V., Dadam, S., Zhu, D., and Mehring, J., "Fuel-Economy Performance Analysis with Exhaust Heat Recovery System on Gasoline Engine," SAE Int. J. Engines 15(6):825-847, 2022, https://doi.org/10.4271/03-15-06-0045.
Language: English

References

  1. Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Technical Paper 2019-01-0314 2019 https://doi.org/10.4271/2019-01-0314
  2. Mihelic , R. Fuel and Freight Efficiency - Past, Present and Future Perspectives SAE Int. J. Commer. Veh. 9 2 2016 120 216 https://doi.org/10.4271/2016-01-8020
  3. Pettersson , N. and Johansson , K. Modeling and Control of Auxiliary Loads in Heavy Vehicles International Journal of Control 79 5 2006 479 495 https://doi.org/10.1080/00207170600587333
  4. Chiara , F. and Canova , M. A Review of Energy Consumption, Management, and Recovery in Automotive Systems, with Considerations of Future Trends Proceedings of the IMechE Part D: Journal of Automobile Engineering 227 6 2013 914 936 https://doi.org/10.1177/0954407012471294
  5. Kelly , K.L. and Gonzales , J. 2017 https://doi.org/10.2172/1402411
  6. Gao , H.O. and Stasko , T.H. Cost-Minimizing Retrofit/Replacement Strategies for Diesel Emissions Reduction Transportation Research Part D: Transport and Environment 42 2009 111 119 https://doi.org/10.1016/j.trd.2008.11.006
  7. Quoilin , S. , Broek , M.V.D. , Declaye , S. , Dewallef , P. et al. Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems Renewable and Sustainable Energy Reviews 22 2013 168 186 https://doi.org/10.1016/j.rser.2013.01.028
  8. Allouache , A. , Leggett , S. , Hall , M. , Tu , M. et al. Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine SAE Int. J. Mater. Manf. 8 2 2015 227 238 https://doi.org/10.4271/2015-01-0339
  9. Imran , M. , Haglind , F. , Lemort , V. , and Meroni , A. Optimization of Organic Rankine Cycle Power Systems for Waste Heat Recovery on Heavy-Duty Vehicles Considering the Performance, Cost, Mass and Volume of the System Energy 180 2019 229 241 https://doi.org/10.1016/j.energy.2019.05.091
  10. Koeberlein , D. 2013 https://www.energy.gov/sites/prod/files/2014/03/f13/ace057_koeberlein_2013_o.pdf
  11. Howellm , T. and Gibble , J. Development of an ORC System to Improve HD Truck Fuel Efficiency DEER Conference Detroit, Michigan, USA 2011 https://www1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2011/wednesday/presentations/deer11_howell.pdf
  12. Renault Trucks 2012 https://corporate.renault-trucks.com/en/press-releases
  13. Seher , D. , Lengenfelder , T. , Jurgen , G. , Nadja , E. et al. Waste Heat Recovery for Commercial Vehicles with a Rankine Process 21st Aachen Colloquium Automobile and Engine Technology Aachen, Germany 2012
  14. Teng , H. Waste Heat Recovery Concept to Reduce Fuel Consumption and Heat Rejection from a Diesel Engine SAE Int. J. Commer. Veh. 3 1 2010 60 68 https://doi.org/10.4271/2010-01-1928
  15. Amicabile , S. , Lee , J.I. , and Kum , D. A Comprehensive Design Methodology of Organic Rankine Cycles for the Waste Heat Recovery of Automotive Heavy-Duty Diesel Engines Applied Thermal Engineering 87 2015 574 585 https://doi.org/10.1016/j.applthermaleng.2015.04.034
  16. Tribioli , L. , Fumarola , A. , and Martini , F. Methodology Procedure for Hybrid Electric Vehicles Design SAE Technical Paper 2011-24-0071 2011 https://doi.org/10.4271/2011-24-0071
  17. De Santis , M. , Agnelli , S. , Silvestri , L. , Di Ilio , G. et al. Characterization of the Powertrain Components for a Hybrid Quadricycle AIP Conference Proceedings 1738 2016 270007 https://doi.org/10.1063/1.4952046
  18. Tribioli , L. , Cozzolino , R. , and Barbieri , M. Optimal Control of a Repowered Vehicle: Plug-In Fuel Cell against Plug-In Hybrid Electric Powertrain AIP Conference Proceedings 2015 2015 1648 https://doi.org/10.1063/1.4912800
  19. Tribioli , L. Energy-Based Design of Powertrain for a Re-Engineered Post-Transmission Hybrid Electric Vehicle Energies 10 7 2017 918 https://doi.org/10.3390/en10070918
  20. Lion , S. , Michos , C.N. , Vlaskos , I. , Rouaud , C. et al. A Review of Waste Heat Recovery and Organic Rankine Cycles (ORC) in on Off-Highway Vehicle Heavy Duty Diesel Engine Applications Renewable and Sustainable Energy Reviews 79 2017 691 708 https://doi.org/10.1016/j.rser.2017.05.082
  21. Russell , R. , Johnson , K. , Durbin , T. , Chen , P. et al. Emissions, Fuel Economy, and Performance of a Class 8 Conventional and Hybrid Truck SAE Technical Paper 2015-01-1083 2015 https://doi.org/10.4271/2015-01-1083
  22. Gao , Z. , Finney , C. , Daw , C. , LaClair , T. et al. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks SAE Int. J. Commer. Veh. 7 2 2014 414 431 https://doi.org/10.4271/2014-01-2326
  23. Okui , N. Estimation of Fuel Economy and Emissions for Heavy-Duty Diesel Plug-In Hybrid Vehicle with Electrical Heating Catalyst System SAE Technical Paper 2017-01-2207 2017 https://doi.org/10.4271/2017-01-2207
  24. Villani , M. and Tribioli , L. Comparison of Different Layouts for the Integration of an Organic Rankine Cycle Unit in Electrified Powertrains of Heavy Duty Diesel Trucks Energy Conversion and Management 187 2019 248 261 https://doi.org/10.1016/j.enconman.2019.02.078
  25. Gao , Z. , Smith , D.E. , Daw , C.S. , Edwards , K.D. et al. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks Energy Conversion and Management 106 2015 766 781 https://doi.org/10.1016/j.enconman.2015.10.006
  26. Wang , R. , Zhao , X. , Wang , C. , and Li , Y. Modeling and Model Order Reduction of Evaporator in Organic Rankine Cycle for Waste Heat Recovery Proceedings of the International Conference on Advanced Mechatronic Systems Zhengzhou, China 2011
  27. Sodja , A. , Zupancic , B. , and Sink , J. Some Aspects of the Modeling of Tube-and-Shell Heat-Exchangers Proceedings of the 7th International Modelica Conference Como, Italy 2009
  28. Wei , D. , Lu , X. , Lu , Z. , and Gu , J. Dynamic Modeling and Simulation of an Organic Rankine Cycle (ORC) System for Waste Heat Recovery Appl Therm Eng 28 2008 1216 1224
  29. Shah , R.K. and London , A.L. Laminar Flow Forced Convection in Ducts Academic Press Elsevier, headquartered in Amsterdam, Netherlands 1978 https://www.elsevier.com/books/laminar-flow-forced-convection-in-ducts/shah/978-0-12-020051-1
  30. Gnielinski , V. Zur Wärmeübertragung bei laminarer Rohrströmung und konstanter Wandtemperatur Chem Ing Tech 61 2 1989 160 161
  31. Gnielinski , V. Ein neues Berechnungsverfahren für die Wärmeübertragung im Übergangsbereich zwischen laminarer und turbulenter Rohrströmung Forsch Ing Wesen 61 9 1995 240 248
  32. Paikert , P. and Schmidt , K.G. 1990
  33. Taylor , C.F. and Toong , T.Y. 1957
  34. Weber , C. , Wirth , M. , Frirdfeldt , R. , Ruhland , H. et al. 1.0l EcoBoost 2nd Generation: A Success Story Continues Aachen Colloquium Aachen, Germany 2017
  35. Dadam , S.R. , Jentz , R. , Lenzen , T. , and Meissner , H. Diagnostic Evaluation of Exhaust Gas Recirculation (EGR) System on Gasoline Electric Hybrid Vehicle SAE Technical Paper 2020-01-0902 2020 https://doi.org/10.4271/2020-01-0902
  36. Zhu , D. , Pritchard , E. , Dadam , S.R. et al. Optimization of Rule-Based Energy Management Strategies for Hybrid Vehicles Using Dynamic Programming Combustion Engines 2021 https://doi.org/10.19206/CE-131967
  37. Dadam , S. , Ravi , V. , Jentz , R. , Kumar , V. et al. Assessment of Exhaust Actuator Control at Low Ambient Temperature Conditions SAE Technical Paper 2021-01-0681 2021 https://doi.org/10.4271/2021-01-0681
  38. Dadam , S.R. , Ali , I. , Zhu , D. , and Kumar , V. Effects of Differential Pressure Measurement Characteristics on High Pressure-EGR Estimation Error in SI-Engines International Journal of Engine Research 2021 https://doi.org/10.1177/14680874211055580
  39. Dadam , S. , Van Nieuwstadt , M. , Lehmen , A. , Ravi , V. et al. A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics SAE Int. J. Passeng. Cars - Mech. Syst. 14 2 2021 https://doi.org/10.4271/06-14-02-0007
  40. Kumar , V. , Zhu , D. , and Dadam , S.R. Intelligent Auxiliary Battery Control-A Connected Approach SAE Technical Paper 2021-01-1248 2021 https://doi.org/10.4271/2021-01-1248
  41. Dadam , S.R. , Di Zhu , V.K. , Ravi , V. , and Palukuru , V.S.S. Detection Method for Cybersecurity Attack on Connected Vehicles SAE Technical Paper 2021-01-1249 2021 https://doi.org/10.4271/2021-01-1249
  42. Quoilin , S. , Aumann , R. , Grill , A. , Schuster , A. et al. Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles Applied Energy 88 6 2011 2183 2190
  43. Hoang , A.T. Waste Heat Recovery from Diesel Engines Based on Organic Rankine Cycle Applied Energy 231 2018 138 166
  44. Quoilin , S. , Declaye , S. , Tchanche , B.F. , and Lemort , V. Thermo-Economic Optimization of Waste Heat Recovery Organic Rankine Cycles Applied Thermal Engineering 31 14-15 2011 2885 2893
  45. van Kleef , L.M.T. , Oyewunmi , O.A. , and Markides , C.N. Multi-Objective Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Power Systems in Waste-Heat Recovery Applications Using Computer-Aided Molecular Design Techniques Applied Energy 251 2019 112513
  46. Horst , T.A. , Rottengruber , H.-S. , Seifert , M. , and Ringler , J. Dynamic HE Model for Performance Prediction and Control System Design of Automotive Waste Heat Recovery Systems Applied Energy 105 2013 293 303 https://doi.org/10.1016/j.apenergy.2012.12.060

Cited By