Open Access

Development and Validation of a Multi-zone Predictive Combustion Model for Large-Bore Dual-Fuel Engines

Journal Article
03-15-05-0038
ISSN: 1946-3936, e-ISSN: 1946-3944
Published December 22, 2021 by SAE International in United States
Development and Validation of a Multi-zone Predictive Combustion
                    Model for Large-Bore Dual-Fuel Engines
Citation: Millo, F., Accurso, F., Piano, A., Fogla, N. et al., "Development and Validation of a Multi-zone Predictive Combustion Model for Large-Bore Dual-Fuel Engines," SAE Int. J. Engines 15(5):703-718, 2022, https://doi.org/10.4271/03-15-05-0038.
Language: English

References

  1. IMO 2013
  2. International Maritime Organization 2013
  3. Deng , J. , Wang , X. , Wei , Z. , Wang , L. et al. A Review of NOx and SOx Emission Reduction Technologies for Marine Diesel Engines and the Potential Evaluation of Liquefied Natural Gas Fuelled Vessels Sci. Total Environ. 766 2021 144319 https://doi.org/10.1016/j.scitotenv.2020.144319
  4. Millo , F. , Bernardi , M. , and Delneri , D. Computational Analysis of Internal and External EGR Strategies Combined with Miller Cycle Concept for a Two Stage Turbocharged Medium Speed Marine Diesel Engine SAE Int. J. Engines 4 1 2011 1319 1330 https://doi.org/10.4271/2011-01-1142
  5. Krishnamoorthi , M. , Malayalamurthi , R. , He , Z. , and Kandasamy , S. A Review on Low Temperature Combustion Engines: Performance, Combustion and Emission Characteristics Renew. Sustain. Energy Rev. 116 September 2019 109404 https://doi.org/10.1016/j.rser.2019.109404
  6. Schlatter , S. , Schneider , B. , Wright , Y.M. , and Boulouchos , K. Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine SAE Technical Paper 2013-24-0112 2013 https://doi.org/10.4271/2013-24-0112
  7. Cho , H.M. and He , B.Q. Spark Ignition Natural Gas Engines—A Review Energy Convers. Manag. 48 2 2007 608 618 https://doi.org/10.1016/j.enconman.2006.05.023
  8. Joung , T.-H. , Kang , S.-G. , Lee , J.-K. , and Ahn , J. The IMO Initial Strategy for Reducing Greenhouse Gas (GHG) Emissions, and Its Follow-Up Actions towards 2050 J. Int. Marit. Safety, Environ. Aff. Shipp. 4 1 2020 1 7 https://doi.org/10.1080/25725084.2019.1707938
  9. Malfi , E. , Bellis , V. , Bozza , F. , Cafari , A. et al. A Phenomenological Model for the Description of Unburned Hydrocarbons Emission in Ultra-Lean Engines Int. J. Engine Res. 2021 https://doi.org/10.1177/14680874211005063
  10. US EPA 2020
  11. Sharafian , A. , Blomerus , P. , and Mérida , W. Natural Gas as a Ship Fuel: Assessment of Greenhouse Gas and Air Pollutant Reduction Potential Energy Policy 131 2019 332 346 https://doi.org/10.1016/j.enpol.2019.05.015
  12. Lindstad , E. and Rialland , A. LNG and Cruise Ships, an Easy Way to Fulfil Regulations—versus the Need for Reducing GHG Emissions Sustainability 12 5 2020 1 15 https://doi.org/10.3390/su12052080
  13. Grochowina , M. , Schiffner , M. , Tartsch , S. , and Sattelmayer , T. Influence of Injection Parameters and Operating Conditions on Ignition and Combustion in Dual-Fuel Engines J. Eng. Gas Turbines Power 140 10 2018 1 10 https://doi.org/10.1115/1.4040089
  14. Singh , S. , Krishnan , S.R. , Srinivasan , K.K. , Midkiff , K.C. et al. Effect of Pilot Injection Timing, Pilot Quantity and Intake Charge Conditions on Performance and Emissions for an Advanced Low-Pilot-Ignited Natural Gas Engine Int. J. Engine Res. 5 4 2004 329 348 https://doi.org/10.1243/146808704323224231
  15. Weber , S. , Stegmann , R. , Prager , M. , and Wachtmeister , G. The Effect of Inlet Valve Timing and Engine Speed on Dual Fuel NG-Diesel Combustion in a Large Bore Engine SAE Int. J. Engines 11 2 2018 3 11 https://doi.org/10.4271/03-11-02-0015
  16. Xu , S. , Anderson , D. , Singh , A. , Hoffman , M. et al. Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations SAE Int. J. Engines 7 4 2014 1665 1673 https://doi.org/10.4271/2014-01-2546
  17. Barro , C. , Nani , C. , Hutter , R. , and Boulouchos , K. Spray Model Based Phenomenological Combustion Description and Experimental Validation for a Dual Fuel Engine SAE Technical Paper 2017-24-0098 2017 https://doi.org/10.4271/2017-24-0098
  18. Nandagopal , S. , Masimalai , S.K. , and Krishnamurthy , K. Data Driven Modeling of In-Cylinder Pressure of a Dual Fuel Compression Ignition Engine Operated with Renewable Fuels Using State Space Approach SAE Technical Paper 2018-28-0022 2018 https://doi.org/10.4271/2018-28-0022
  19. Zirngibl , S. and Wachtmeister , G. Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process SAE Technical Paper 2020-01-5013 2020 https://doi.org/10.4271/2020-01-5013
  20. Taritas , I. , Kozarac , D. , Sjeric , M. , Sierra Aznar , M. et al. Development and Validation of a Quasi-Dimensional Dual Fuel (Diesel - Natural Gas) Combustion Model SAE Int. J. Engines 10 2 2017 483 500 https://doi.org/10.4271/2017-01-0517
  21. Krenn , M. , Pirker , G. , Wimmer , A. , Djuranec , S. et al. Methodology for Analysis and Simulation of Dual Fuel Combustion in Large Engines THIESEL 2014 Conference Thermo- and Fluid Dynamic Processes in Direct Injection Engines 1 14 2014
  22. Morel , T. and Wahiduzzaman , S. Modeling of Diesel Combustion and Emissions XXVI FISITA Congress 1996
  23. Jung , D. and Assanis , D.N. Quasidimensional Modeling of Direct Injection Diesel Engine Nitric Oxide, Soot, and Unburned Hydrocarbon Emissions J. Eng. Gas Turbines Power 128 2 2006 388 396 https://doi.org/10.1115/1.2056027
  24. Musculus , M.P.B. and Kattke , K. Entrainment Waves in Diesel Jets SAE Int. J. Engines 2 1 2009 1170 1193 https://doi.org/10.4271/2009-01-1355
  25. Zhou , X. , Li , T. , Lai , Z. , and Wei , Y. Modeling Diesel Spray Tip and Tail Penetrations after End-of-Injection Fuel 237 2019 442 456 https://doi.org/10.1016/j.fuel.2018.10.029
  26. Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symp. Combust. 5 1 1955 347 355 https://doi.org/10.1016/S0082-0784(55)80047-1
  27. Millo , F. , Accurso , F. , Piano , A. , Caputo , G. et al. Experimental and Numerical Investigation of the Ignition Process in a Large Bore Dual Fuel Engine Fuel 290 2021 120073 https://doi.org/10.1016/j.fuel.2020.120073
  28. Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemial Kinetics 46 9 2014 512 542 https://doi.org/10.1002/kin.20867
  29. Kahila , H. , Kaario , O. , Ahmad , Z. , Masouleh , M.G. et al. A Large-Eddy Simulation Study on the Influence of Diesel Pilot Spray Quantity on Methane-Air Flame Initiation Combust. Flame 206 2019 506 521 https://doi.org/10.1016/j.combustflame.2019.05.025
  30. Srna , A. , Bolla , M. , Wright , Y.M. , Herrmann , K. et al. Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines Proc. Combust. Inst. 37 4 2019 4741 4749 https://doi.org/10.1016/j.proci.2018.06.177
  31. Tekgül , B. , Kahila , H. , Kaario , O. , and Vuorinen , V. Large-Eddy Simulation of Dual-Fuel Spray Ignition at Different Ambient Temperatures 215 2020 51 65 https://doi.org/10.1016/j.combustflame.2020.01.017
  32. Hardenberg , H.O. and Hase , F.W. An Empirical Formula for Computing the Pressure Rise Delay of a Fuel from Its Cetane Number and from the Relevant Parameters of Direct-Injection Diesel Engines SAE Technical Paper 790493 1979 https://doi.org/10.4271/790493
  33. Rether , D. , Grill , M. , Schmid , A. , and Bargende , M. Quasi-Dimensional Modeling of CI-Combustion with Multiple Pilot- and Post Injections SAE Int. J. Engines 3 1 2010 12 27 https://doi.org/10.4271/2010-01-0150
  34. Chmela , F.G. , Pirker , G.H. , and Wimmer , A. Zero-Dimensional ROHR Simulation for DI Diesel Engines—A Generic Approach Energy Convers. Manag. 48 11 2007 2942 2950 https://doi.org/10.1016/j.enconman.2007.07.004
  35. Chmela , F. , Engelmayer , M. , Pirker , G. , and Wimmer , A. Prediction of Turbulence Controlled Combustion in Diesel Engines Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines 1 15 2004
  36. Wahiduzzaman , S. , Moral , T. , and Sheard , S. Comparison of Measured and Predicted Combustion Characteristics of a Four-Valve S.I. Engine SAE Technical Paper 930613 1993 https://doi.org/10.4271/930613
  37. Fogla , N. , Bybee , M. , Mirzaeian , M. , Millo , F. et al. Development of a K-k-ɛ Phenomenological Model to Predict In-Cylinder Turbulence SAE Int. J. Engines 10 2 2017 1 14 https://doi.org/10.4271/2017-01-0542
  38. Metghalchi , M. and Keck , J.C. Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature Combust. Flame 48 C 1982 191 210 https://doi.org/10.1016/0010-2180(82)90127-4
  39. Gülder , O.L. AIAA Progr Astronaut Aeronaut 95 1984 181 197
  40. Amirante , R. , Distaso , E. , Tamburrano , P. , and Reitz , R.D. Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural Gas and Gasoline for Spark-Ignition Engine Simulations Int. J. Engine Res. 18 9 2017 951 970 https://doi.org/10.1177/1468087417720018
  41. Wang , Y. , Movaghar , A. , Wang , Z. , Liu , Z. et al. Laminar Flame Speeds of Methane/Air Mixtures at Engine Conditions: Performance of Different Kinetic Models and Power-Law Correlations Combust. Flame 218 2020 101 108 https://doi.org/10.1016/j.combustflame.2020.05.004
  42. Masouleh , M.G. , Wehrfritz , A. , Kaario , O. , Kahila , H. et al. Comparative Study on Chemical Kinetic Schemes for Dual-Fuel Combustion of n-Dodecane/Methane Blends Fuel 191 2017 62 76 https://doi.org/10.1016/j.fuel.2016.10.114
  43. Smith , G.P. , Golden , D.M. , Frenklach , M. , Moriarty , N.W. et al. GRI-Mech 3.0 http://combustion.berkeley.edu/gri-mech/version30/text30.html 2021
  44. Wang , H. , You , X. , Joshi , A.V. , Davis , S.G. et al. 2007 http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm 2021
  45. Narayanaswamy , K. , Pepiot , P. , and Pitsch , H. A Chemical Mechanism for Low to High Temperature Oxidation of n-Dodecane as a Component of Transportation Fuel Surrogates Combust. Flame 161 4 2014 866 884 https://doi.org/10.1016/j.combustflame.2013.10.012
  46. García Valladolid , P. , Tunestål , P. , Monsalve-Serrano , J. , García , A. et al. Impact of Diesel Pilot Distribution on the Ignition Process of a Dual Fuel Medium Speed Marine Engine Energy Convers. Manag. 149 2017 2017 192 205 https://doi.org/10.1016/j.enconman.2017.07.023
  47. Eder , L. , Kiesling , C. , Priesching , P. , Pirker , G. et al. Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine SAE Technical Paper 2017-01-0559 2017 https://doi.org/10.4271/2017-01-0559
  48. Burke , E.M. , Güthe , F. , and Monaghan , R.F.D. A Comparison of Turbulent Flame Speed Correlations for Proceedings of the ASME Turbo Expo 2016 Turbomachinery Technical Conference Expo 1 13 2016
  49. Reddy Muppala , S.P. , Aluri , N.K. , Dinkelacker , F. , and Leipertz , A. Development of an Algebraic Reaction Rate Closure for the Numerical Calculation of Turbulent Premixed Methane, Ethylene, and Propane/Air Flames for Pressures up to 1.0 MPa Combust. Flame 140 4 2005 257 266 https://doi.org/10.1016/j.combustflame.2004.11.005
  50. Kobayashi , H. Experimental Study of High-Pressure Turbulent Premixed Flames Exp. Therm. Fluid Sci. 26 2-4 2002 375 387 https://doi.org/10.1016/S0894-1777(02)00149-8
  51. Ratzke , A. , Schöffler , T. , Kuppa , K. , and Dinkelacker , F. Validation of Turbulent Flame Speed Models for Methane-Air-Mixtures at High Pressure Gas Engine Conditions Combust. Flame 162 7 2015 2778 2787 https://doi.org/10.1016/j.combustflame.2015.04.011
  52. Morel , T. , Rackmil , C.I. , Keribar , R. , and Jennings , M.J. Model for Heat Transfer and Combustion in Spark Ignited Engines and Its Comparison with Experiments SAE Technical Paper 880198 1988 https://doi.org/10.4271/880198
  53. Walther , H.-P. , Schlatter , S. , Wachtmeister , G. , and Boulouchos , K. Combustion Models for Lean-Burn Gas Engines with Pilot Injection MTZ Worldw. 73 2 2012 56 63 https://doi.org/10.1365/s38313-012-0144-3
  54. Lavole , G.A. , Heywood , J.B. , and Keck , J.C. Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines Combust. Sci. Technol. 1 4 1970 313 326 https://doi.org/10.1080/00102206908952211
  55. Millo , F. , Boccardo , G. , Piano , A. , Arnone , L. et al. Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine SAE Technical Paper 2017-24-0009 2017 https://doi.org/10.4271/2017-24-0009

Cited By