Open Access

Synergetic Application of Zero-, One-, and Three-Dimensional Computational Fluid Dynamics Approaches for Hydrogen-Fuelled Spark Ignition Engine Simulation

Journal Article
03-15-04-0030
ISSN: 1946-3936, e-ISSN: 1946-3944
Published December 02, 2021 by SAE International in United States
Synergetic Application of Zero-, One-, and Three-Dimensional
                    Computational Fluid Dynamics Approaches for Hydrogen-Fuelled Spark Ignition
                    Engine Simulation
Sector:
Citation: Millo, F., Piano, A., Rolando, L., Accurso, F. et al., "Synergetic Application of Zero-, One-, and Three-Dimensional Computational Fluid Dynamics Approaches for Hydrogen-Fuelled Spark Ignition Engine Simulation," SAE Int. J. Engines 15(4):561-580, 2022, https://doi.org/10.4271/03-15-04-0030.
Language: English

References

  1. European Commission 2019 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN
  2. Korn , T. Der effizienteste Weg zur CO 2 -Minderung: die neueste Generation von Wasserstoffverbrennungsmotoren [The Most Efficient Way for CO 2 Reduction: The New Generation of Hydrogen Internal Combustion Engines Summary] 41th International Vienna Motor Symposium Vienna 2020
  3. Dilara , P. The Future of Clean Cars in Europe: EU Green Deal and EURO 7 4th Sino-EU Workshop on New Emissions Standards and Regulations for Motor Vehicles Virtual event jointly organised by the Vehicle Emission Control Center (China) and the Joint Research Centre 2021
  4. European Commission 2020 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1594897267722&uri=CELEX:52020DC0301
  5. European Commission 2020 https://ec.europa.eu/growth/industry/policy/european-clean-hydrogen-alliance_en
  6. Manoharan , Y. , Hosseini , S.E. , Butler , B. , Alzhahrani , H. et al. Hydrogen Fuel Cell Vehicles: Current Status and Future Prospect Applied Sciences 9 11 2019 2296 https://doi.org/10.3390/app9112296
  7. Yip , H.L. , Srna , A. , Yuen , A.C.Y. , Kook , S. et al. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion Applied Sciences 9 22 2019 4842 https://doi.org/10.3390/app9224842
  8. Munshi , S. , Garner , G. , Theissl , H. , Hofer , F. et al. 2021 https://wfsinc.com/file_library/files/wpt-wfsinc/20201225_Westport_AVL_Whitepaper_Hydrogen_HPDI_final.pdf
  9. Verhelst , S. , Demuynck , J. , Sierens , R. , Scarcelli , R. et al. Chapter 16—Update on the Progress of Hydrogen-Fueled Internal Combustion Engines Renewable Hydrogen Technologies Elsevier 2013 381 400 https://doi.org/10.1016/B978-0-444-56352-1.00016-7
  10. Karim , G.A. Hydrogen as a Spark Ignition Engine Fuel International Journal of Hydrogen Energy 28 5 2003 569 577 https://doi.org/10.1016/S0360-3199(02)00150-7
  11. Jilakara , S. , Vaithianathan , J. , Natarajan , S. , Ramakrishnan , V. et al. An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine SAE Int. J. Engines 8 1 2015 314 325 https://doi.org/10.4271/2015-26-0051
  12. Berckmüller , M. , Rottengruber , H. , Eder , A. , Brehm , N. et al. Potentials of a Charged SI-Hydrogen Engine SAE Technical Paper 2003-01-3210 2003 https://doi.org/10.4271/2003-01-3210
  13. Klepatz , K. , Rottengruber , H. , Zeilinga , S. , Koch , D. et al. Loss Analysis of a Direct-Injection Hydrogen Combustion Engine SAE Technical Paper 2018-01-1686 2018 https://doi.org/10.4271/2018-01-1686
  14. Dhyani , V. and Subramanian , K.A. Fundamental Characterization of Backfire in a Hydrogen Fuelled Spark Ignition Engine Using CFD and Experiments International Journal of Hydrogen Energy 44 60 2019 32254 32270 https://doi.org/10.1016/j.ijhydene.2019.10.077
  15. Winkler-Goldstein , R. and Rastetter , A. Power to Gas: The Final Breakthrough for the Hydrogen Economy? Green 3 1 2013 69 78 https://doi.org/10.1515/green-2013-0001
  16. Abdalla , A.M. , Hossain , S. , Nisfindy , O.B. , Azad , A.T. et al. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review Energy Conversion and Management 165 2018 602 627 https://doi.org/10.1016/j.enconman.2018.03.088
  17. Enke , W. , Gruber , M. , Hecht , L. , and Staar , B. Der bivalente V12-Motor des BMW Hydrogen 7 MTZ-Motortechnische Zeitschrift 68 2007 446 453 https://doi.org/10.1007/BF03227411
  18. Mazda https://www.mazda.com/en/innovation/technology/env/hre/ 2021
  19. MAN and Shell Shell, MAN and Connexxion Planning Worlds Largest Hydrogen Public Transport Project Green Car Congress 2006 https://www.greencarcongress.com/2006/06/shell_man_and_c.html 2021
  20. Pauer , T. , Weller , H. , Schünemann , E. , Eichlseder , H. et al. H 2 ICE for Future Passenger Cars and Light Commercial Vehicles 41th International Vienna Motor Symposium Vienna 2020
  21. Babayev , R. , Andersson , A. , Dalmau , A.S. , Im , H.G. et al. Computational Characterization of Hydrogen Direct Injection and Nonpremixed Combustion in a Compression-Ignition Engine International Journal of Hydrogen Energy 46 35 2021 18678 18696 https://doi.org/10.1016/j.ijhydene.2021.02.223
  22. Tsujimura , T. and Suzuki , Y. The Utilization of Hydrogen in Hydrogen/Diesel Dual Fuel Engine International Journal of Hydrogen Energy 42 19 2017 14019 14029 https://doi.org/10.1016/j.ijhydene.2017.01.152
  23. Saravanan , N. , Nagarajan , G. , Sanjay , G. , Dhanasekaran , C. et al. Combustion Analysis on a DI Diesel Engine with Hydrogen in Dual Fuel Mode Fuel 87 17-18 2008 3591 3599 https://doi.org/10.1016/j.fuel.2008.07.011
  24. White , C.M. , Steeper , R.R. , and Lutz , A.E. The Hydrogen-Fueled Internal Combustion Engine: A Technical Review International Journal of Hydrogen Energy 31 10 2006 1292 1305 https://doi.org/10.1016/j.ijhydene.2005.12.001
  25. Thomas Koch , D. , Sousa , A. , and Bertram , D. H 2 -Engine Operation with EGR Achieving High Power and High Efficiency Emission-Free Combustion SAE Technical Paper 2019-01-2178 2019 https://doi.org/10.4271/2019-01-2178
  26. Li , Y. , Gao , W. , Zhang , P. , Ye , Y. et al. Effects Study of Injection Strategies on Hydrogen-Air Formation and Performance of Hydrogen Direct Injection Internal Combustion Engine International Journal of Hydrogen Energy 44 47 2019 26000 26011 https://doi.org/10.1016/j.ijhydene.2019.08.055
  27. Verhelst , S. , De Landtsheere , J. , De Smet , F. , Billiouw , C. et al. Effects of Supercharging, EGR and Variable Valve Timing on Power and Emissions of Hydrogen Internal Combustion Engines SAE Int. J. Engines 1 1 2009 647 656 https://doi.org/10.4271/2008-01-1033
  28. Le Moine , J. , Senecal , P.K. , Kaiser , S.A. , Salazar , V.M. et al. A Computational Study of the Mixture Preparation in a Direct-Injection Hydrogen Engine J. Eng. Gas Turbines Power 137 11 2015 111508 https://doi.org/10.1115/1.4030397
  29. Gerke , U. and Boulouchos , K. Three-Dimensional Computational Fluid Dynamics Simulation of Hydrogen Engines Using a Turbulent Flame Speed Closure Combustion Model International Journal of Engine Research 13 5 2012 464 481 https://doi.org/10.1177/1468087412438796
  30. Scarcelli , R. , Wallner , T. , Obermair , H. , Salazar , V.M. et al. CFD and Optical Investigations of Fluid Dynamics and Mixture Formation in a DI-H2ICE ASME 2010 Internal Combustion Engine Division Fall Technical Conference San Antonio, TX 2010 https://doi.org/10.1115/ICEF2010-35084
  31. Wallner , T. , Matthias , N. , and Scarcelli , R. Influence of Injection Strategy in a High-Efficiency Hydrogen Direct Injection Engine SAE Int. J. Fuels Lubr. 5 1 2012 289 300 https://doi.org/10.4271/2011-01-2001
  32. Scarcelli , R. , Wallner , T. , Matthias , N. , Salazar , V. et al. Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles SAE Int. J. Engines 4 2 2011 2361 2375 https://doi.org/10.4271/2011-24-0096
  33. Verhelst , S. , Woolley , R. , Lawes , M. , and Sierens , R. Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen-Air Mixtures at Engine-Like Conditions Proceedings of Combustion Institute 30 1 2005 209 216 https://doi.org/10.1016/j.proci.2004.07.042
  34. Ó Conaire , M. , Curran , H.J. , Simmie , J.M. , Pitz , W.J. et al. A Comprehensive Modeling Study of Hydrogen Oxidation Int. J. Chem. Kinet. 36 11 2004 603 622 https://doi.org/10.1002/kin.20036
  35. Li , H. and Karim , G.A. Knock in Spark Ignition Hydrogen Engines International Journal of Hydrogen Energy 29 8 2004 859 865 https://doi.org/10.1016/j.ijhydene.2003.09.013
  36. Golisano , I.R. , Scalabrini , I.S. , Arpaia , A. , Pesce , F.C. et al. PUNCH Hydrogen Internal Combustion Engine & KERS: An Appealing Value-Proposition for Green Power Pack 42th International Vienna Motor Symposium Vienna 2021
  37. Richards , K.J. , Senecal , P.K. , and Pomraning , E. CONVERGE 3.0.14 Madison, WI Convergent Science 2021
  38. Issa , R.I. Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting Journal of Computational Physics 62 1 1986 40 65 https://doi.org/10.1016/0021-9991(86)90099-9
  39. Rhie , C.M. and Chow , W.L. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation AIAA Journal 21 11 1983 1525 1532 https://doi.org/10.2514/3.8284
  40. Convergent Science 2020
  41. Scarcelli , R. , Matthias , N. , and Wallner , T. Numerical Investigation of Combustion in a Lean Burn Gasoline Engine SAE Technical Paper 2013-24-0029 2013 https://doi.org/10.4271/2013-24-0029
  42. Orszag , S.A. , Yakhot , V. , Flannery , W.S. , Boysan , F. et al. Renormalization Group Modeling and Turbulence Simulations Near-Wall Turbulent Flows 1993 1031 1046
  43. Yakhot , V. , Orszag , S.A. , Thangam , S. , and Gatski , T.B. Development of Turbulence Models for Shear Flows by a Double Expansion Technique Physics of Fluids A: Fluid Dynamics 4 1992 1510 https://doi.org/10.1063/1.858424
  44. Versteeg , H.K. and Malalasekera , W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method Harlow Prentice Hall 2007
  45. Amsden , A.A. 1997 https://doi.org/10.2172/505339
  46. Givler , S. , Raju , M. , Pomraning , E. , Senecal , P. et al. Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism SAE Technical Paper 2013-01-1098 2013 https://doi.org/10.4271/2013-01-1098
  47. Broatch , A. , Margot , X. , Novella , R. , and Gomez-Soriano , J. Combustion Noise Analysis of Partially Premixed Combustion Concept Using Gasoline Fuel in a 2-Stroke Engine Energy 107 2016 612 624 https://doi.org/10.1016/j.energy.2016.04.045
  48. Battistoni , M. , Mariani , F. , Risi , F. , and Poggiani , C. Combustion CFD Modeling of a Spark Ignited Optical Access Engine Fueled with Gasoline and Ethanol Energy Procedia 82 2015 424 431 https://doi.org/10.1016/j.egypro.2015.11.829
  49. Biswas , S. Physics of Turbulent Jet Ignition: Mechanisms and Dynamics of Ultra-Lean Combustion Springer International Publishing 2018 https://doi.org/10.1007/978-3-319-76243-2
  50. Savard , B. and Blanquart , G. An a Priori Model for the Effective Species Lewis Numbers in Premixed Turbulent Flames Combustion and Flame 161 2014 1547 1557 https://doi.org/10.1016/j.combustflame.2013.12.014
  51. Zhang , Y. , Mathieu , O. , Petersen , E.L. , Bourque , G. et al. Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data Combustion and Flame 182 2017 122 141 https://doi.org/10.1016/j.combustflame.2017.03.019
  52. Kéromnès , A. , Metcalfe , W.K. , Heufer , K.A. , Donohoe , N. et al. An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures Combustion and Flame 160 2013 995 1011 https://doi.org/10.1016/j.combustflame.2013.01.001
  53. Olm , C. , Zsély , I.G. , Pálvölgyi , R. , Varga , T. et al. Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms Combust. Flame 161 2014 2219 2234 https://doi.org/10.1016/j.combustflame.2014.03.006
  54. Lemke , M. , Cai , L. , Reiss , J. , Pitsch , H. et al. Adjoint-Based Sensitivity Analysis of Quantities of Interest of Complex Combustion Models Combustion Theory and Modelling 23 2019 180 196 https://doi.org/10.1080/13647830.2018.1495845
  55. Alam , S.S. and Depcik , C. Adaptive Wiebe Function Parameters for a Port-Fuel Injected Hydrogen-Fueled Engine Proceedings of ASME International Mechanical Engineering Congress and Exposition IMECE2019 Salt Lake City, UT 2019 https://doi.org/10.1115/IMECE2019-10031
  56. Kunal , R. , Natarajan , S. , Abraham , M. , Subash , G. et al. Effects of Governing Parameters on the Performance and Emissions of Hydrogen Engine for Automotive Application SAE Technical Paper 2013-01-2891 2013 https://doi.org/10.4271/2013-01-2891
  57. Rezaei , R. , Hayduk , C. , Sens , M. , Fandakov , A. , et al. Hydrogen Combustion—A Puzzle Piece of Future Sustainable Transportation! Proceedings of SIA 2020 Digital Powertrain & Energy France 2020 304 311
  58. D’Errico , G. , Onorati , A. , and Ellgas , S. 1D Thermo-Fluid Dynamic Modelling of an S.I. Single-Cylinder H 2 Engine with Cryogenic Port Injection International Journal of Hydrogen Energy 33 20 2008 5829 5841 https://doi.org/10.1016/j.ijhydene.2008.05.096
  59. Mirzaeian , M. , Millo , F. , and Rolando , L. Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine SAE Technical Paper 2016-01-0557 2016 https://doi.org/10.4271/2016-01-0557
  60. Millo , F. , Gullino , F. , and Rolando , L. Methodological Approach for 1D Simulation of Port Water Injection for Knock Mitigation in a Turbocharged DISI Engine Energies 13 17 2020 1 21 https://doi.org/10.3390/en13174297
  61. Wahiduzzaman , S. , Moral , T. , and Sheard , S. Comparison of Measured and Predicted Combustion Characteristics of a Four-Valve S.I. Engine SAE Technical Paper 930613 1993 https://doi.org/10.4271/930613
  62. Zhang , K. , Banyon , C. , Bugler , J. , Curran , H.J. et al. An Updated Experimental and Kinetic Modeling Study of n -Heptane Oxidation Combustion and Flame 172 2016 116 135 https://doi.org/10.1016/j.combustflame.2016.06.028
  63. Metghalchi , M. and Keck , J.C. Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature Combustion and Flame 48 1982 191 210 https://doi.org/10.1016/0010-2180(82)90127-4
  64. Verhelst , S. , Sierens , R. A Laminar Burning Velocity Correlation for Hydrogen/Air Mixtures Valid at Spark-Ignition Engine Conditions Proceedings of ICES03 2003 Spring Technical Conference of the ASME Internal Combustion Engine Division Salzburg, Austria 2003 https://doi.org/10.1115/ICES2003-0555
  65. Kitagawa , T. , Nakahara , T. , Maruyama , K. , Kado , K. et al. Turbulent Burning Velocity of Hydrogen-Air Premixed Propagating Flames at Elevated Pressures International Journal of Hydrogen Energy 33 20 2008 5842 5849 https://doi.org/10.1016/j.ijhydene.2008.06.013
  66. Fogla , N. , Bybee , M. , Mirzaeian , M. , Millo , F. et al. Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence SAE Int. J. Engines 10 2 2017 562 575 https://doi.org/10.4271/2017-01-0542
  67. Lavoie , G.A. , Heywood , J.B. , and Keck , J.C. Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines Combustion Science and Technology 1 4 1970 313 326 https://doi.org/10.1080/00102206908952211
  68. Esposito , S. , Diekhoff , L. , and Pischinger , S. Prediction of Gaseous Pollutant Emissions from a Spark-Ignition Direct-Injection Engine with Gas-Exchange Simulation International Journal of Engine Research 22 12 2021 3533 3547 https://doi.org/10.1177/14680874211005053
  69. Millo , F. , Boccardo , G. , Piano , A. , Arnone , L. et al. Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine SAE Technical Paper 2017-24-0009 2017 https://doi.org/10.4271/2017-24-0009
  70. Boretti , A.A. and Watson , H.C. Enhanced Combustion by Jet Ignition in a Turbocharged Cryogenic Port Fuel Injected Hydrogen Engine International Journal of Hydrogen Energy 34 5 2009 2511 2516 https://doi.org/10.1016/j.ijhydene.2008.12.089
  71. Sadiq Al-Baghdadi , M.A.R. Development of a Pre-ignition Submodel for Hydrogen Engines Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219 10 2005 1203 1212 https://doi.org/10.1243/095440705X34883
  72. Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symposium (International) on Combustion 5 1 1955 347 355 https://doi.org/10.1016/S0082-0784(55)80047-1
  73. Douaud , A. and Eyzat , P. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines SAE Technical Paper 780080 1978 https://doi.org/10.4271/780080
  74. Gamma Technologies 2019
  75. Fandakov , A. A Phenomenological Knock Model for the Development of Future Engine Concepts Springer Vieweg 2018 https://doi.org/10.1007/978-3-658-24875-8
  76. Bianco , A. , Millo , F. , and Piano , A. Modelling of Combustion and Knock Onset Risk in a High-Performance Turbulent Jet Ignition Engine Transportation Engineering 2 2020 100037 https://doi.org/10.1016/j.treng.2020.100037
  77. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 https://doi.org/10.4271/670931
  78. DieselNet 2021 https://dieselnet.com/standards/eu/hd.php#intro
  79. Millo , F. , Pautasso , E. , Delneri , D. , and Troberg , M. A DoE Analysis on the Effects of Compression Ratio, Injection Timing, Injector Nozzle Hole Size and Number on Performance and Emissions in a Diesel Marine Engine SAE Technical Paper 2007-01-0670 2007 https://doi.org/10.4271/2007-01-0670
  80. Beatrice , C. Technology Review for SI ICE Based Powertrains with 50% Brake Thermal Efficiency Does the Internal Combustion Engine Have a Future? International Workshop Torino 2020
  81. Ernst , B. , Kammeyer , J. , and Seume , J.R. Improved Map Scaling Methods for Small Turbocharger Compressors Proceedings of ASME Turbo Expo 3 2011 733 744 https://doi.org/10.1115/GT2011-45345
  82. Japikse , D. Centrifugal Compressor Design and Performance Wilder, Vermont Concepts ETI 1996

Cited By