This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions

Journal Article
03-15-03-0017
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 21, 2021 by SAE International in United States
Validation of Kinetic Mechanisms against Various Ignition Delay Data
                    and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and
                    Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition
                    Conditions
Sector:
Citation: Zhou, Y. and Lawler, B., "Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions," SAE Int. J. Engines 15(3):349-365, 2022, https://doi.org/10.4271/03-15-03-0017.
Language: English

References

  1. Najt , P.M. and Foster , D.E. Compression-Ignited Homogeneous Charge Combustion SAE Technical Paper 830264 1983 https://doi.org/10.4271/830264
  2. Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symposium (International) on Combustion 5 1 1955 347 356
  3. Pan , J. , Zhao , P. , Law , C.K. , and Wei , H. A Predictive Livengood-Wu Correlation for Two-Stage Ignition International Journal of Engine Research 17 8 2016 825 835
  4. Cancino , L.R. , Fikri , M. , Oliveira , A.A.M. , and Schulz , C. Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling Fuel 90 3 2011 1238 1244
  5. Cancino , L.R. , Fikri , M. , Oliveira , A.A.M. , and Schulz , C. Measurement and Chemical Kinetics Modeling of Shock-Induced Ignition of Ethanol−Air Mixtures Energy & Fuels 24 5 2010 2830 2840
  6. Gauthier , B.M. , Davidson , D.F. , and Hanson , R.K. Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures Combustion and Flame 139 4 2004 300 311
  7. Healy , D. , Curran , H.J. , Simmie , J.M. , Kalitan , D.M. et al. Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures Combustion and Flame 155 3 2008 441 448
  8. Healy , D. , Curran , H.J. , Dooley , S. , Simmie , J.M. et al. Methane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures Combustion and Flame 155 3 2008 451 461
  9. He , X. , Donovan , M.T. , Zigler , B.T. , Palmer , T.R. et al. An Experimental and Modeling Study of Iso-Octane Ignition Delay Times under Homogeneous Charge Compression Ignition Conditions Combustion and Flame 142 3 2005 266 275
  10. Lawler , B. , Splitter , D. , Szybist , J. , and Kaul , B. Thermally Stratified Compression Ignition: A New Advanced Low Temperature Combustion Mode with Load Flexibility Applied Energy 189 2017 122 132
  11. Gainey , B. , Yan , Z. , Gohn , J. , Rahimi Boldaji , M. et al. TSCI with Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture SAE Technical Paper 2019-01-1146 2019 https://doi.org/10.4271/2019-01-1146
  12. Rahimi Boldaji , M. , Gainey , B. , and Lawler , B. Thermally Stratified Compression Ignition Enabled by Wet Ethanol with a Split Injection Strategy: A CFD Simulation Study Applied Energy 235 2019 813 826
  13. Gainey , B. , Hariharan , D. , Yan , Z. , Zilg , S. et al. A Split Injection of Wet Ethanol to Enable Thermally Stratified Compression Ignition International Journal of Engine Research 21 8 2020 1441 1453
  14. DelVescovo , D. , Kokjohn , S. , and Reitz , R. The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (Iso-Octane) SAE Int. J. Engines 9 1 2016 520 535 https://doi.org/10.4271/2016-01-0551
  15. Marinov , N.M. A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation International Journal of Chemical Kinetics 31 3 1999 183 220
  16. Mittal , G. , Burke , S.M. , Davies , V.A. , Parajuli , B. et al. Autoignition of Ethanol in a Rapid Compression Machine Combustion and Flame 161 5 2014 1164 1171
  17. Bhagatwala , A. , Chen , J.H. , and Lu , T. Direct Numerical Simulations of HCCI/SACI with Ethanol Combustion and Flame 161 7 2014 1826 1841
  18. Zhang , Y. , El-Merhubi , H. , Lefort , B. , Le Moyne , L. et al. Probing the Low-Temperature Chemistry of Ethanol via the Addition of Dimethyl Ether Combustion and Flame 190 2018 74 86
  19. Zhou , C.-W. , Li , Y. , Burke , U. , Banyon , C. et al. An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements Combustion and Flame 197 2018 423 438
  20. Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. A Comprehensive Modeling Study of Iso-Octane Oxidation Combustion and Flame 129 3 2002 253 280
  21. Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. A Comprehensive Modeling Study of n-Heptane Oxidation Combustion and Flame 114 1 1998 149 177
  22. Liu , Y.-D. , Jia , M. , Xie , M.-Z. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy & Fuels 26 12 2012 7069 7083
  23. Wang , H. , Yao , M. , and Reitz , R.D. Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations Energy & Fuels 27 12 2013 7843 7853
  24. Luong , M.B. , Luo , Z. , Lu , T. , Chung , S.H. et al. Direct Numerical Simulations of the Ignition of Lean Primary Reference Fuel/Air Mixtures with Temperature Inhomogeneities Combustion and Flame 160 10 2013 2038 2047
  25. Wu , Y. , Pal , P. , Som , S. , and Lu , T. A Skeletal Chemical Kinetic Mechanism for Gasoline and Gasoline/Ethanol Blend Surrogates for Engine CFD Applications International Conference on Chemical Kinetics Chicago, IL 2017
  26. Smith , G.P. , Golden , D.M. , Frenklach , M. , Moriarty , N.W. et al. http://www.me.berkeley.edu/gri_mech/ 2018
  27. Petersen , E.L. , Kalitan , D.M. , Simmons , S. , Bourque , G. et al. Methane/Propane Oxidation at High Pressures: Experimental and Detailed Chemical Kinetic Modeling Proceedings of the Combustion Institute 31 1 2007 447 454
  28. Healy , D. , Kalitan , D.M. , Aul , C.J. , Petersen , E.L. et al. Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures Energy & Fuels 24 3 2010 1521 1528
  29. Fieweger , K. , Blumenthal , R. , and Adomeit , G. Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure Combustion and Flame 109 4 1997 599 619
  30. Ciezki , H.K. and Adomeit , G. Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures under Engine Relevant Conditions Combustion and Flame 93 4 1993 421 433
  31. Spadaccini , L.J. and Colket , M.B. Ignition Delay Characteristics of Methane Fuels Progress in Energy and Combustion Science 20 5 1994 431 460
  32. Goy , C.J. , Moran , A.J. , and Thomas , G.O. Autoignition Characteristics of Gaseous Fuels at Representative Gas Turbine Conditions 2001 78514 V002T02A18 https://doi.org/10.1115/2001-GT-0051
  33. Bourgeois , N. , Goldsborough , S.S. , Vanhove , G. , Duponcheel , M. et al. CFD Simulations of Rapid Compression Machines Using Detailed Chemistry: Impact of Multi-Dimensional Effects on the Auto-Ignition of the Iso-Octane Proceedings of the Combustion Institute 36 1 2017 383 391
  34. Goodwin , D.G. , Moffat , H.K. , and Speth , R.L. 2018
  35. Zhou , Y. , Hariharan , D. , Yang , R. , Sotirios , M. et al. A Predictive 0-D HCCI Combustion Model for Natural Gas, Ethanol, Gasoline, and Primary Reference Fuel Blends Fuel 237 1 2018 658 675
  36. Division of Information Technology https://it.stonybrook.edu/help/kb/understanding-seawulf 2018

Cited By