This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Distribution Analysis of Multiple Injectors for the Double Compression Expansion Engine Concept

Journal Article
03-14-06-0048
ISSN: 1946-3936, e-ISSN: 1946-3944
Published May 12, 2021 by SAE International in United States
Energy Distribution Analysis of Multiple Injectors for the Double Compression Expansion Engine Concept
Citation: Goyal, H., Jiminez, C., Gustav, N., Im, H. et al., "Energy Distribution Analysis of Multiple Injectors for the Double Compression Expansion Engine Concept," SAE Int. J. Engines 14(6):805-819, 2021, https://doi.org/10.4271/03-14-06-0048.
Language: English

References

  1. Reitz , R.D. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER Editorial: The Future of the Internal Combustion Engine Int. J. Engine Res. 21 1 2020 3 10 https://doi.org/10.1177/1468087419877990
  2. Xu , M. , Gui , Y. , and Deng , K.Y. Fuel Injection and EGR Control Strategy on Smooth Switching of CI/HCCI Mode in a Diesel Engine J. Energy Inst. 88 2 2015 157 168 https://doi.org/10.1016/j.joei.2014.06.005
  3. You-cheng , S. , Min , X. , Yong , G. , Yi , C. et al. Effects of Injection Pressure, Exhaust Gas Recirculation and Intake Pressure on the Cycle-to-Cycle Variations of HCCI Combustion J. Energy Inst. 89 2 2016 293 301 https://doi.org/10.1016/j.joei.2015.01.017
  4. Vélez Godiño , J.A. , Jiménez-Espadafor Aguilar , F.J. , and García , M.T. Simulation of HCCI Combustion in Air-Cooled Off-Road Engines Fuelled with Diesel and Biodiesel J. Energy Inst. 91 4 2018 549 562 https://doi.org/10.1016/j.joei.2017.04.002
  5. Aydoğan , B. Experimental Investigation of Tetrahydrofuran Combustion in Homogeneous Charge Compression Ignition (HCCI) Engine: Effects of Excess Air Coefficient, Engine Speed and Inlet Air Temperature J. Energy Inst. 93 3 2020 1163 1176 https://doi.org/10.1016/j.joei.2019.10.009
  6. Kavuri , C. , Paz , J. , and Kokjohn , S.L. A Comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) Strategies at High Load, Low Speed Conditions Energy Convers. Manag. 127 2016 324 341 https://doi.org/10.1016/j.enconman.2016.09.026
  7. Goyal , H. , Kook , S. , and Ikeda , Y. The Influence of Fuel Ignition Quality and First Injection Proportion on Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Engine Fuel 235 2019 1207 1215 https://doi.org/10.1016/j.fuel.2018.08.090
  8. Goyal , H. and Kook , S. Ignition Process of Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Optical Engine Fuel 256 2019 115844 https://doi.org/10.1016/j.fuel.2019.115844
  9. Goyal , H. , Zhang , Y. , Kook , S. , Kim , K.S. et al. Low- to High-Temperature Reaction Transition in a Small-Bore Optical Gasoline Compression Ignition (GCI) Engine SAE Int. J. Engines 12 5 2019 473 488 https://doi.org/10.4271/03-12-05-0031
  10. Liu , H. , Tang , Q. , Yang , Z. , Ran , X. et al. A Comparative Study on Partially Premixed Combustion (PPC) and Reactivity Controlled Compression Ignition (RCCI) in an Optical Engine Proc. Combust. Inst. 37 4 2019 4759 4766 https://doi.org/10.1016/j.proci.2018.06.004
  11. Kokjohn , S. , Reitz , R.D. , Splitter , D. , and Musculus , M. Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence SAE Int. J. Engines 5 2 2012 248 269 https://doi.org/10.4271/2012-01-0375
  12. Senthil Kumar , M. , Arul , K. , and Sasikumar , N. Impact of Oxygen Enrichment on the Engine’s Performance, Emission and Combustion Behavior of a Biofuel Based Reactivity Controlled Compression Ignition Engine J. Energy Inst. 92 1 2019 51 61 https://doi.org/10.1016/j.joei.2017.12.001
  13. Tang , Q. , Liu , H. , Ran , X. , Li , M. et al. Effects of Direct-Injection Fuel Types and Proportion on Late-Injection Reactivity Controlled Compression Ignition Combust. Flame 211 2020 445 455 https://doi.org/10.1016/j.combustflame.2019.10.018
  14. Cummins , L. Diesel’s Engine: From Conception to 1918 Wilsonville, OR Carnot Press 1993
  15. Phillips , F. , Gilbert , I. , Pirault , J.P. , and Megel , M. Scuderi Split Cycle Research Engine: Overview, Architecture and Operation SAE Int. J. Engines 4 1 2011 450 466 https://doi.org/10.4271/2011-01-0403
  16. Dong , G. , Morgan , R. , and Heikal , M. A Novel Split Cycle Internal Combustion Engine with Integral Waste Heat Recovery Appl. Energy 157 2015 744 753 https://doi.org/10.1016/j.apenergy.2015.02.024
  17. Clarke , J.M. and Berlinger , W.G. A New Compression Ignition Engine Concept for High Power Density J. Eng. Gas Turbines Power 121 2 1999 211 217 https://doi.org/10.1115/1.2817107
  18. Clarke , J. and O’Malley , E. Analytical Comparison of a Turbocharged Conventional Diesel and a Naturally Aspirated Compact Compression Ignition Engine Both Sized for a Highway Truck SAE Technical Paper 2013-01-1736 2013 https://doi.org/10.4271/2013-01-1736
  19. Durrett , R.P. and Gopalakrishnan , V. 2009
  20. Meldolesi , R. and Badain , N. Scuderi Split Cycle Engine: Air Hybrid Vehicle Powertrain Simulation Study SAE Technical Paper 2012-01-1013 2012 https://doi.org/10.4271/2012-01-1013
  21. Finneran , J. , Garner , C.P. , Bassett , M. , and Hall , J. A Review of Split-Cycle Engines Int. J. Engine Res. 2018 https://doi.org/10.1177/1468087418789528
  22. Lam , N. , Tuner , M. , Tunestal , P. , Andersson , A. et al. Double Compression Expansion Engine Concepts: A Path to High Efficiency SAE Int. J. Engines 8 4 2015 1562 1578 https://doi.org/10.4271/2015-01-1260
  23. Lam , N. , Andersson , A. , and Tunestal , P. Double Compression Expansion Engine Concepts: Efficiency Analysis Over a Load Range SAE Technical Paper 2018-01-0886 2018 https://doi.org/10.4271/2018-01-0886
  24. Lam , N. , Tunestal , P. , and Andersson , A. Analyzing Factors Affecting Gross Indicated Efficiency When Inlet Temperature Is Changed SAE Technical Paper 2018-01-1780 2018 https://doi.org/10.4271/2018-01-1780
  25. Lam , N. , Tunestal , P. , and Andersson , A. Simulation of System Brake Efficiency in a Double Compression-Expansion Engine-Concept (DCEE) Based on Experimental Combustion Data SAE Technical Paper 2019-01-0073 2019 https://doi.org/10.4271/2019-01-0073
  26. Bhavani Shankar , V.S. , Lam , N. , Andersson , A. , and Johansson , B. Optimum Heat Release Rates for a Double Compression Expansion (DCEE) Engine SAE Technical Paper 2017-01-0636 2017 https://doi.org/10.4271/2017-01-0636
  27. Okamoto , T. and Uchida , N. New Concept for Overcoming the Trade-Off Between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine SAE Int. J. Engines 9 2 2016 859 867 https://doi.org/10.4271/2016-01-0729
  28. Uchida , N. , Okamoto , T. , and Watanabe , H. A New Concept of Actively Controlled Rate of Diesel Combustion for Improving Brake Thermal Efficiency of Diesel Engines: Part 1—Verification of the Concept Int. J. Engine Res. 19 4 2018 474 487 https://doi.org/10.1177/1468087417720332
  29. Uchida , N. and Watanabe , H. A New Concept of Actively Controlled Rate of Diesel Combustion (ACCORDIC): Part II—Simultaneous Improvements in Brake Thermal Efficiency and Heat Loss with Modified Nozzles Int. J. Engine Res. 20 1 2019 34 45 https://doi.org/10.1177/1468087418820472
  30. Nyrenstedt , G. , Alturkestani , T. , Im , H. , and Johansson , B. CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept SAE Technical Paper 2019-01-0070 2019 https://doi.org/10.4271/2019-01-0070
  31. Nyrenstedt , G. , Im , H. , Andersson , A. , and Johansson , B. Novel Geometry Reaching High Efficiency for Multiple Injector Concepts SAE Technical Paper 2019-01-0246 2019 https://doi.org/10.4271/2019-01-0246
  32. Dyuisenakhmetov , A. , Goyal , H. , Houidi , M.B. , Babayev , R. et al. Isobaric Combustion at a Low Compression Ratio SAE Technical Paper 2020-01-0797 2020 https://doi.org/10.4271/2020-01-0797
  33. Goyal , H. , Dyuisenakhmetov , A. , Houidi , M.B. , Johansson , B. et al. The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion SAE Int. J. Engines 13 5 2020 603 615 https://doi.org/10.4271/03-13-05-0038
  34. Reitz , R.D. and Diwakar , R. Structure of High-Pressure Fuel Sprays SAE Technical Paper 870598 1987 https://doi.org/10.4271/870598
  35. Amsden , A. , O’Rourke , P. , and Butler , T. 1989 https://doi.org/10.2172/6228444
  36. Sarathy , M. , Atef , N. , Alfazazi , A. , Badra , J. et al. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations SAE Technical Paper 2018-01-0191 2018 https://doi.org/10.4271/2018-01-0191
  37. Babajimopoulos , A. , Assanis , D.N. , Flowers , D.L. , Aceves , S.M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines Int. J. Engine Res. 6 5 2005 497 512
  38. Angelberger , C. , Poinsot , T. , and Delhay , B. Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations SAE Technical Paper 972881 1997 https://doi.org/10.4271/972881
  39. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988 https://doi.org/10987654
  40. Nyrenstedt , G. , Ramadan , A. , Tang , Q. , Badra , J. et al. Isobaric Combustion for High Efficiency in an Optical Diesel Engine SAE Technical Paper 2020-01-0301 2020 https://doi.org/10.4271/2020-01-0301
  41. Nyrenstedt , G. , Tang , Q. , Sampath , R. , Alramadan , A. et al. A Comparative Study of Isobaric Combustion and Conventional Diesel Combustion in Both All-Metal and Optical Engines Fuel 295 2021 120638
  42. Nyrenstedt , G. , Houidi , M. Ben , Babayev , R. , Im , H. et al. Computational Fluid Dynamics Investigation on Multiple Injector Concepts at Different Swirl Ratios in a Heavy Duty Engine ASME Internal Combustion Engine Division Fall Technical Conference Nov. 1-4 2020 https://doi.org/10.1115/ICEF2020-2933
  43. Babayev , R. , Nyrenstedt , G. , and Johansson , B. Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions SAE Technical Paper 2020-01-2034 2020 https://doi.org/10.4271/2020-01-2034

Cited By