Open Access

The Impact of Miller Valve Timing on Combustion and Charging Performance of an Ethanol- and Methanol-Fueled Heavy-Duty Spark Ignition Engine

Journal Article
03-14-05-0044
ISSN: 1946-3936, e-ISSN: 1946-3944
Published May 10, 2021 by SAE International in United States
The Impact of Miller Valve Timing on Combustion and Charging Performance of an Ethanol- and Methanol-Fueled Heavy-Duty Spark Ignition Engine
Citation: Mahendar, S., Venkataraman, V., and Erlandsson, A., "The Impact of Miller Valve Timing on Combustion and Charging Performance of an Ethanol- and Methanol-Fueled Heavy-Duty Spark Ignition Engine," SAE Int. J. Engines 14(5):733-748, 2021, https://doi.org/10.4271/03-14-05-0044.
Language: English

References

  1. Kalghatgi , G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Appl. Energy 225 February 2018 965 974 https://doi.org/10.1016/j.apenergy.2018.05.076
  2. Reitz , R.D. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER Editorial: The Future of the Internal Combustion Engine Int. J. Engine Res. 21 1 2020 3 10 https://doi.org/10.1177/1468087419877990
  3. IEA 2017
  4. Verhelst , S. , Turner , J.W. , Sileghem , L. , and Vancoillie , J. Methanol as a Fuel for Internal Combustion Engines Prog. Energy Combust. Sci. 70 2019 43 88 https://doi.org/10.1016/j.pecs.2018.10.001
  5. Larsson , T. , Stenlaas , O. , and Erlandsson , A. Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels SAE Technical Paper 2019-01-0036 2019 https://doi.org/10.4271/2019-01-0036
  6. Shamun , S. , Belgiorno , G. , Di Blasio , G. , Beatrice , C. et al. Performance and Emissions of Diesel-Biodiesel-Ethanol Blends in a Light Duty Compression Ignition Engine Appl. Therm. Eng. 145 July 2018 444 452 https://doi.org/10.1016/j.applthermaleng.2018.09.067
  7. Belgiorno , G. , Di Blasio , G. , Shamun , S. , Beatrice , C. et al. Performance and Emissions of Diesel-Gasoline-Ethanol Blends in a Light Duty Compression Ignition Engine Fuel 217 December 2017 2018 78 90 https://doi.org/10.1016/j.fuel.2017.12.090
  8. Beatrice , C. , Denbratt , I. , Di Blasio , G. , Di Luca , G. et al. Experimental Assessment on Exploiting Low Carbon Ethanol Fuel in a Light-Duty Dual-Fuel Compression Ignition Engine Appl. Sci. 10 20 2020 1 21 https://doi.org/10.3390/app10207182
  9. Di Blasio , G. , Beatrice , C. , and Molina , S. Effect of Port Injected Ethanol on Combustion Characteristics in a Dual-Fuel Light Duty Diesel Engine SAE Technical Paper 2013-01-1692 2013 https://doi.org/10.4271/2013-01-1692
  10. Saccullo , M. , Benham , T. , and Denbratt , I. Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests SAE Technical Paper 2018-01-0259 2018 https://doi.org/10.4271/2018-01-0259
  11. Giramondi , N. , Jäger , A. , Mahendar , S.K. , and Erlandsson , A. Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine SAE Technical Paper 2020-01-2077 2020 https://doi.org/10.4271/2020-01-2077
  12. Velazquez , S. , Melo , E.H. , Moreira , J.R. , Apolinario , S.M. et al. Ethanol Usage in Urban Public Transportation - Presentation of Results SAE Technical Paper 2010-36-0130 2010 https://doi.org/10.4271/2010-36-0130
  13. Mahendar , S.K. , Erlandsson , A. , and Adlercreutz , L. Challenges for Spark Ignition Engines in Heavy Duty Application: A Review SAE Technical Paper 2018-01-0907 2018 https://doi.org/10.4271/2018-01-0907
  14. Mahendar , S.K. , Larsson , T. , and Christiansen , A. Alcohol Lean Burn in Heavy Duty Engines: Achieving 25 Bar IMEP with High Efficiency in Spark Ignited Operation Int. J. Engine Res. 2020 https://doi.org/10.1177/1468087420972897
  15. Zhao , J. Research and Application of Over-Expansion Cycle (Atkinson and Miller) Engines—A Review Appl. Energy 185 2017 300 319 https://doi.org/10.1016/j.apenergy.2016.10.063
  16. Millo , F. , Mallamo , F. , and Mego , G.G. The Potential of Dual Stage Turbocharging and Miller Cycle for HD Diesel Engines SAE Technical Paper 2005-01-0221 2005 https://doi.org/10.4271/2005-01-0221
  17. Millo , F. , Bernardi , M. , and Delneri , D. Computational Analysis of Internal and External EGR Strategies Combined with Miller Cycle Concept for a Two Stage Turbocharged Medium Speed Marine Diesel Engine SAE Int. J. Engines 4 1 2011 1319 1330 https://doi.org/10.4271/2011-01-1142
  18. Kovács , D. and Eilts , P. Potentials of the Miller Cycle on HD Diesel Engines Regarding Performance Increase and Reduction of Emissions SAE Technical Paper 2015-24-2440 2015 https://doi.org/10.4271/2015-24-2440
  19. Zhang , Y. , Wang , Z. , Bai , H. , Guo , C. et al. The Reduction of Mechanical and Thermal Loads in a High-Speed HD Diesel Engine Using Miller Cycle with Late Intake Valve Closing SAE Technical Paper 2017-01-0637 2017 https://doi.org/10.4271/2017-01-0637
  20. Korte , V. , Fraser , N. , Taylor , J. , and Dingelstadt , R. Efficient Downsizing for Future Gasoline Engines MTZ Worldw. 72 5 2011 42 49 https://doi.org/10.1365/s38313-011-0052-y
  21. Scheidt , M. , Brands , C. , Kratzsch , M. , and Günther , M. Combined Miller/Atkinson Strategy for Future Downsizing Concepts MTZ Worldw. 75 2014 4 11 https://doi.org/10.1007/s38313-014-0144-6
  22. Kawamoto , N. , Naiki , K. , Kawai , T. , Shikida , T. et al. Development of New 1.8-Liter Engine for Hybrid Vehicles SAE Technical Paper 2009-01-1061 2009 https://doi.org/10.4271/2009-01-1061
  23. Ellies , B. , Schenk , C. , and Dekraker , P. Benchmarking and Hardware-in-the-Loop Operation of a 2014 MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine SAE Technical Paper 2016-01-1007 2016 https://doi.org/10.4271/2016-01-1007
  24. Luisi , S. , Doria , V. , Stroppiana , A. , Millo , F. et al. Experimental Investigation on Early and Late Intake Valve Closures for Knock Mitigation through Miller Cycle in a Downsized Turbocharged Engine SAE Technical Paper 2015-01-0760 2015 https://doi.org/10.4271/2015-01-0760
  25. Zhang , F.R. , Okamoto , K. , Morimoto , S. , and Shoji , F. Methods of Increasing the BMEP (Power Output) for Natural Gas Spark Ignition Engines SAE Technical Paper 981385 1998 https://doi.org/10.4271/981385
  26. Johansson , B. 2014
  27. Berntsson , A.W. , Josefsson , G. , Ekdahl , R. , Ogink , R. et al. The Effect of Tumble Flow on Efficiency for a Direct Injected Turbocharged Downsized Gasoline Engine SAE Int. J. Engines 4 2 2011 2298 2311 https://doi.org/10.4271/2011-24-0054
  28. Mahendar , S.K. , Giramondi , N. , Venkataraman , V. , and Christiansen Erlandsson , A. Numerical Investigation of Increasing Turbulence through Piston Geometries on Knock Reduction in Heavy Duty Spark Ignition Engines SAE Technical Paper 2019-01-2302 2019 https://doi.org/10.4271/2019-01-2302
  29. Osborne , R. , Downes , T. , O’Brien , S. , Pendlebury , K. et al. A Miller Cycle Engine without Compromise - The Magma Concept SAE Int. J. Engines 10 3 2017 846 857 https://doi.org/10.4271/2017-01-0642
  30. Ketterer , J.E. , Gautier , E. , and Keating , E.J. The Development and Evaluation of Robust Combustion Systems for Miller Cycle Engines SAE Technical Paper 2018-01-1416 2018 https://doi.org/10.4271/2018-01-1416
  31. Li , T. , Gao , Y. , Wang , J. , and Chen , Z. The Miller Cycle Effects on Improvement of Fuel Economy in a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine: EIVC vs. LIVC Energy Convers. Manag. 79 2014 59 65 https://doi.org/10.1016/j.enconman.2013.12.022
  32. Luo , X. , Teng , H. , Lin , Y. , Li , B. et al. A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of a TGDI Engine Part II: Influences of Intake Event and Intake Valve Closing Timing on the Cylinder Charge Motion SAE Technical Paper 2017-01-2246 2017 https://doi.org/10.4271/2017-01-2246
  33. Zaccardi , J.M. , Pagot , A. , Vangraefschepe , F. , Dognin , C. et al. Optimal Design for a Highly Downsized Gasoline Engine SAE Technical Paper 2009-01-1794 2009 https://doi.org/10.4271/2009-01-1794
  34. Cordier , M. , Laget , O. , Duffour , F. , Gautrot , X. et al. Increasing Modern Spark Ignition Engine Efficiency: A Comprehension Study of High CR and Atkinson Cycle SAE Technical Paper 2016-01-2172 2016 https://doi.org/10.4271/2016-01-2172
  35. Riess , M. , Benz , A. , Wöbke , M. , and Sens , M. Intake Valve Lift Strategies for Turbulence Generation MTZ Worldw. 74 2013 42 47 https://doi.org/10.1007/s38313-013-0074-8
  36. Lanzanova , T. , Nora , M.D. , Machado , P.R.M. , and Zhao , H. Investigation of Advanced Valve Timing Strategies for Efficient Spark Ignition Ethanol Operation SAE Technical Paper 2018-36-0147 2018 https://doi.org/10.4271/2018-36-0147
  37. Fontana , G. and Galloni , E. Variable Valve Timing for Fuel Economy Improvement in a Small Spark-Ignition Engine Appl. Energy 86 1 2009 96 105 https://doi.org/10.1016/j.apenergy.2008.04.009
  38. Martins , M.E.S. and Lanzanova , T.D.M. Full-Load Miller Cycle with Ethanol and EGR: Potential Benefits and Challenges Appl. Therm. Eng. 90 2015 274 285 https://doi.org/10.1016/j.applthermaleng.2015.06.086
  39. Mirzaeian , M. , Millo , F. , Rolando , L. , and Torino , P. Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine SAE Technical Paper 2016-01-0557 2016 https://doi.org/10.4271/2016-01-0557
  40. Sok , R. , Yamaguchi , K. , and Kusaka , J. 0D/1D Turbulent Combustion Model Assessment from an Ultra-Lean Spark Ignition Engine SAE Technical Paper 2019-01-1409 2019 https://doi.org/10.4271/2019-01-1409
  41. Malcher , S. , Bargende , M. , Grill , M. , Baretzky , U. et al. Investigation of Flame Propagation Description in Quasi-Dimensional Spark Ignition Engine Modeling SAE Technical Paper 2018-01-1655 2018 https://doi.org/10.4271/2018-01-1655
  42. Morel , T. and Keribar , R. A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers SAE Technical Paper 850204 1985 https://doi.org/10.4271/850204
  43. Vancoillie , J. , Verhelst , S. , and Demuynck , J. Laminar Burning Velocity Correlations for Methanol-Air and Ethanol-Air Mixtures Valid at SI Engine Conditions SAE Technical Paper 2011-01-0846 2011 https://doi.org/10.4271/2011-01-0846
  44. Robertson , D. , Conway , G. , Chadwell , C. , McDonald , J. et al. Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine SAE Technical Paper 2018-01-0161 2018 https://doi.org/10.4271/2018-01-0161
  45. Mahendar , S.K. and Erlandsson , C.A. Semi-Predictive Modelling of Diluted Ethanol and Methanol Combustion in Conventional Spark Ignition Operation SAE Technical Paper 2021-01-0386 2021 https://doi.org/10.4271/2021-01-0386
  46. Vacca , A. , Cupo , F. , Chiodi , M. , Bargende , M. et al. The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy SAE Technical Paper 2020-37-0010 2020 https://doi.org/10.4271/2020-37-0010
  47. Attard , W.P. , Fraser , N. , Parsons , P. , and Toulson , E. A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain SAE Int. J. Engines 3 2 2010 20 37 https://doi.org/10.4271/2010-01-1457
  48. Heywood , J. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  49. Lakshminarayanan , P.A. and Kumar Agarwal , A. Design and Development of Heavy Duty Diesel Engines Singapore Springer Nature 2020 978-981-15-0969-8
  50. Fogla , N. , Bybee , M. , Mirzaeian , M. , Millo , F. et al. Development of a K-k-ɛ Phenomenological Model to Predict In-Cylinder Turbulence SAE Int. J. Engines 10 2 2017 562 575 https://doi.org/10.4271/2017-01-0542

Cited By