This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Control-Oriented Exhaust Gas Temperature Modelling Based on Wiebe Equation

Journal Article
03-14-05-0042
ISSN: 1946-3936, e-ISSN: 1946-3944
Published May 10, 2021 by SAE International in United States
Control-Oriented Exhaust Gas Temperature Modelling Based on Wiebe Equation
Sector:
Citation: Mecagni, J., Brusa, A., Cavina, N., Corti, E. et al., "Control-Oriented Exhaust Gas Temperature Modelling Based on Wiebe Equation," SAE Int. J. Engines 14(5):697-712, 2021, https://doi.org/10.4271/03-14-05-0042.
Language: English

References

  1. Zhao , F. Technologies for Near-Zero-Emission Gasoline-Powered Vehicles Warrendale, PA SAE International 2006 9780768014617
  2. Cavina , N. , Mancini , G. , Corti , E. , Moro , D. et al. Thermal Management Strategies for SCR After Treatment Systems SAE Technical Paper 2013-24-0153 2013 https://doi.org/10.4271/2013-24-0153
  3. Fu , H. , Chen , X. , Shilling , I. , and Richardson , S. A One-Dimensional Model for Heat Transfer in Engine Exhaust Systems SAE Technical Paper 2005-01-0696 2005 https://doi.org/10.4271/2005-01-0696
  4. Fulton , B. , Van Nieuwstadt , M. , Petrovic , S. , and Roettger , D. Exhaust Manifold Temperature Observer Model SAE Technical Paper 2014-01-1155 2014 https://doi.org/10.4271/2014-01-1155
  5. Martin , D. and Rocci , B. Virtual Exhaust Gas Temperature Measurement SAE Technical Paper 2017-01-1065 2017 https://doi.org/10.4271/2017-01-1065
  6. Gamma Technology Inc. 2018
  7. Borg , J. and Alkidas , A. Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions SAE Technical Paper 2008-01- 1088 2008 https://doi.org/10.4271/2008-01-1088
  8. Saad , C. , Maroteaux , F. , Millet , J. , and Aubertin , F. Combustion Modeling of a Direct Injection Diesel Engine Using Double Wiebe Functions: Application to HiL Real-Time Simulations SAE Technical Paper 2011-24-0143 2011 https://doi.org/10.4271/2011-24-0143
  9. Malbec , L. , Le Berr , F. , Richard , S. , Font , G. et al. Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators SAE Technical Paper 2009-01-0675 2009 https://doi.org/10.4271/2009-01-0675
  10. Ravaglioli , V. , Moro , D. , Serra , G. , and Ponti , F. MFB50 On-Board Evaluation Based on a Zero-Dimensional ROHR Model SAE Technical Paper 2011-01-1420 2011 https://doi.org/10.4271/2011-01-1420
  11. Ranuzzi , F. , Cavina , N. , Brusa , A. , De Cesare , M. et al. Development and Software in the Loop Validation of a Model-Based Water Injection Combustion Controller for a GDI TC Engine SAE Technical Paper 2019-01-1174 2019 https://doi.org/10.4271/2019-01-1174
  12. Brusa , A. , Cavina , N. , Rojo , N. , Cucchi , M. et al. Development and Validation of a Control-Oriented Analytic Engine Simulator SAE Technical Paper 2019-24-0002 2019 https://doi.org/10.4271/2019-24-0002
  13. GT-SUITE
  14. Brusca , S. , Lanzafame , R. , and Messina , M. A Combustion Model for ICE by Means of Neural Network SAE Technical Paper 2005-01-2110 2005 https://doi.org/10.4271/2005-01-2110
  15. Finesso , R. , Spessa , E. , Yang , Y. , Conte , G. et al. Neural-Network Based Approach for Real-Time Control of BMEP and MFB50 in a Euro 6 Diesel Engine SAE Technical Paper 2017-24-0068 2017 https://doi.org/10.4271/2017-24-0068
  16. Egan , D. , Koli , R. , Zhu , Q. , and Prucka , R. Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control SAE Technical Paper 2019-01-1289 2019 https://doi.org/10.4271/2019-01-1289
  17. Eriksson , L. Mean Value Models for Exhaust System Temperatures SAE Technical Paper 2002-01-0374 2002 https://doi.org/10.4271/2002-01-0374
  18. Papaioannou , N. , Leach , F. , and Davy , M. Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines SAE Technical Paper 2018-01-1765 2018 https://doi.org/10.4271/2018-01-1765
  19. Muric , K. , Tunestal , P. , and Stenlaas , O. A Fast Crank Angle Resolved Zero-Dimensional NO x Model Implemented on a Field-Programmable Gate Array SAE Int. J. Engines 6 1 2013 246 256 https://doi.org/10.4271/2013-04-0344
  20. Kar , K. , Roberts , S. , Stone , R. , Oldfield , M. et al. Instantaneous Exhaust Temperature Measurements Using Thermocouple Compensation Techniques SAE Technical Paper 2004-01-1418 2004 https://doi.org/10.4271/2004-01-1418
  21. Gat , U. , Kammer , D. , and Hahn , O.J. The Effect of Temperature Dependent Properties on Transient Measurement with Intrinsic Thermocouple International Journal of Heat and Mass Transfer 18 1975 1337 1342
  22. Henning , C.D. and Parker , R. Transient Response of an Intrinsic Thermocouple J. Heat Transfer. 89 2 1967 146 152 https://doi.org/10.1115/1.3614337
  23. Brusa , A. , Mecagni , J. , Cavina , N. , Corti , E. et al. Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model SAE Technical Paper 2020-24-0008 2020 https://doi.org/10.4271/2020-24-0008
  24. Gopujkar , S. , Worm , J. , and Robinette , D. Methods of Pegging Cylinder Pressure to Maximize Data Quality SAE Technical Paper 2019-01-0721 2019 https://doi.org/10.4271/2019-01-0721
  25. Loganathan , S. , Murali Manohar , R. , Thamaraikannan , R. , Dhanasekaran , R. et al. Direct Injection Diesel Engine Rate of Heat Release Prediction using Universal Load Correction Factor in Double Wiebe Function for Performance Simulation SAE Technical Paper 2011-01-2456 2012 https://doi.org/10.4271/2011-01-2456
  26. McBride , B.J. , Gordon , S. , and Reno , M.A.
  27. Matlab Documentation 2020 https://www.mathworks.com/
  28. Lindström , F. , Ångström , H. , Kalghatgi , G. , and Möller , C. An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations SAE Technical Paper 2005-01-2106 2005 https://doi.org/10.4271/2005-01-2106
  29. Papaioannou , N. , Leach , F. , and Davy , M. Improving the Uncertainty of Exhaust Gas Temperature Measurements in Internal Combustion Engines J. Eng. Gas Turbines Power . 142 7 2020 071007 https://doi.org/10.1115/1.4047283

Cited By