This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cylinder Deactivation Strategies to Stabilize High Stratification Gasoline Compression Ignition Down to Idle

Journal Article
03-14-04-0035
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 22, 2021 by SAE International in United States
Cylinder Deactivation Strategies to Stabilize High Stratification Gasoline Compression Ignition Down to Idle
Sector:
Citation: Babu, A. and Kokjohn, S., "Cylinder Deactivation Strategies to Stabilize High Stratification Gasoline Compression Ignition Down to Idle," SAE Int. J. Engines 14(4):569-593, 2021, https://doi.org/10.4271/03-14-04-0035.
Language: English

References

  1. ExxonMobil https://corporate.exxonmobil.com/Energy-and-environment/Looking-forward/Outlook-for-Energy 2019
  2. Gibbs , L. et al. 2009
  3. ExxonMobil http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf 2016
  4. ExxonMobil http://corporate.exxonmobil.com/en/energy/energy-outlook 2018
  5. Kokjohn , S.L. 2012
  6. Kokjohn , S. , Hanson , R. , Splitter , D. , Kaddatz , J. et al. Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines SAE Int. J. Engines 4 1 360 374 2011 https://doi.org/10.4271/2011-01-0357
  7. Kalghatgi , G. , and Johansson , B. Gasoline Compression Ignition Approach to Efficient, Clean and Affordable Future Engines Proc. Inst. Mech. Eng., Part D: J. Mech. Engr. Sci. 232 1 118 138 2018 https://doi.org/10.1177/0954407017694275
  8. Roberts , J.A. 2018
  9. Kalghatgi , G.T. , Risberg , P. , and Ångström , H.-E. Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 https://doi.org/10.4271/2006-01-3385
  10. Dec , J.E. , and Yang , Y. Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions—Using Conventional Gasoline SAE Int. J. Engines 3 1 750 767 2010 https://doi.org/10.4271/2010-01-1086
  11. Bessonette , P.W. , Schleyer , C.H. , Duffy , K.P. , Hardy , W.L. et al. Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion SAE Technical Paper 2007-01-0191 2007 https://doi.org/10.4271/2007-01-0191
  12. Dempsey , A. , Curran , S. , Wagner , R. , Cannella , W. et al. Gasoline Compression Ignition (GCI) on a Light-Duty Multi-Cylinder Engine Using a Wide Range of Fuel Reactivities and Heavy Fuel Stratification Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference Denver, CO 2020
  13. Goyal , H. , and Kook , S. Ignition Process of Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Optical Engine Fuel 256 115844 2019 https://doi.org/10.1016/j.fuel.2019.115844
  14. Payri , R. , García , A. , Domenech , V. , Durrett , R. et al. An Experimental Study of Gasoline Effects on Injection Rate, Momentum Flux and Spray Characteristics Using a Common Rail Diesel Injection System Fuel 97 390 399 2012 https://doi.org/10.1016/j.fuel.2011.11.065
  15. Tang , M. et al. Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part I: Non-Reacting, Non-Vaporizing Sprays The ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems Atlanta, GA 2017
  16. Zhang , J. et al. Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part II: Non-Reacting, Vaporizing Sprays The ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems Atlanta, GA 2017
  17. Kim , K. , Kim , D. , Jung , Y. , and Bae , C. Spray and Combustion Characteristics of Gasoline and Diesel in a Direct Injection Compression Ignition Engine Fuel 109 616 626 2013 https://doi.org/10.1016/j.fuel.2013.02.060
  18. Benajes , J. , Novella , R. , Garcia , A. , Domenech , V. et al. An Investigation on Mixing and Auto-ignition Using Diesel and Gasoline in a Direct-Injection Compression-Ignition Engine Operating in PCCI Combustion Conditions SAE Int. J. Engines 4 2 2590 2602 2011 https://doi.org/10.4271/2011-37-0008
  19. Roberts , J. , Kokjohn , S. , Hou , D. , and Huang , Y. Performance of Gasoline Compression Ignition (GCI) with on Demand Reactivity Enhancement SAE Technical Paper 2018-01-0255 2018 https://doi.org/10.4271/2018-01-0255
  20. Lewander , C.M. , Johansson , B. , and Tunestal , P. Extending the Operating Region of Multi-Cylinder Partially Premixed Combustion Using High Octane Number Fuel SAE Technical Paper 2011-01-1394 2011 https://doi.org/10.4271/2011-01-1394
  21. Lundgren , M. , Rosell , J. , Richter , M. , Andersson , Ö. et al. Optical Study on Combustion Transition from HCCI to PPC with Gasoline Compression Ignition in a HD Engine SAE Technical Paper 2016-01-0768 2016 https://doi.org/10.4271/2016-01-0768
  22. Mao , B. , Chen , P. , Liu , H. , Zheng , Z. et al. Gasoline Compression Ignition Operation on a Multi-Cylinder Heavy Duty Diesel Engine Fuel 215 339 351 2018 https://doi.org/10.1016/j.fuel.2017.09.020
  23. Liu , H. , Mao , B. , Liu , J. , Zheng , Z. et al. Pilot Injection Strategy Management of Gasoline Compression Ignition (GCI) Combustion in a Multi-Cylinder Diesel Engine Fuel 221 116 127 2018 https://doi.org/10.1016/j.fuel.2018.01.073
  24. Zhang , Y. , Sommers , S. , Pei , Y. , Kumar , P. et al. Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine SAE Technical Paper 2017-01-0696 2017 https://doi.org/10.4271/2017-01-0696
  25. Zhang , Y. , Kumar , P. , Pei , Y. , Traver , M. et al. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 https://doi.org/10.4271/2018-01-0226
  26. Kolodziej , C.P. , Ciatti , S. , Vuilleumier , D. , Das Adhikary , B. et al. Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure SAE Technical Paper 2014-01-1302 2014 https://doi.org/10.4271/2014-01-1302
  27. Babu , A. , Roberts , J. , and Kokjohn , S. Effects of Fuel Properties and Composition on Low-Load Gasoline Compression Ignition Strategies SAE Int. J. Engines 14 2 2021 https://doi.org/10.4271/03-14-02-0010
  28. Kolodziej , C.P. and Ciatti , S.A. Effects of Injector Nozzle Inclusion Angle on Extending the Lower Load Limit of Gasoline Compression Ignition Using 87 AKI Gasoline Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference Columbus, IN 2014 https://doi.org/10.1115/ICEF2014-5632
  29. Hoyer , K.S. , Sellnau , M. , Sinnamon , J. , and Husted , H. Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI) SAE Int. J. Engines 6 2 815 826 2013 https://doi.org/10.4271/2013-01-0928
  30. Jiang , C. , Li , Z. , Liu , G. , Qian , Y. et al. Achieving High Efficient Gasoline Compression Ignition (GCI) Combustion through the Cooperative-Control of Fuel Octane Number and Air Intake Conditions Fuel 242 23 34 2019 https://doi.org/10.1016/j.fuel.2019.01.032
  31. Paz , J. , Staaden , D. , and Kokjohn , S. Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load SAE Technical Paper 2018-01-0898 2018 https://doi.org/10.4271/2018-01-0898
  32. Locker , R.J. , Gunasekaran , N. , and Sawyer , C. Diesel Particulate Filter Test Methods SAE Technical Paper 2002-01-1009 2002 https://doi.org/10.4271/2002-01-1009
  33. Miller , W.R. , Klein , J.T. , Mueller , R. , Doelling , W. et al. The Development of Urea-SCR Technology for US Heavy Duty Trucks SAE Technical Paper 2000-01-0190 2000 https://doi.org/10.4271/2000-01-0190
  34. Cummins https://www.cummins.com/components/aftertreatment/system-fundamentals 2019
  35. Caterpillar https://www.cat.com/en_US/support/operations/technology/tier-4-technology/building-block-technology.html 2019
  36. Vos , K.R. , Shaver , G.M. , Ramesh , A.K. , and McCarthy , J. Impact of Cylinder Deactivation and Cylinder Cutout via Flexible Valve Actuation on Fuel Efficient Aftertreatment Thermal Management at Curb Idle Front. Mech. Eng. 5 52 2019 https://doi.org/10.3389/fmech.2019.00052
  37. Khan , A.B. et al. Idle Emissions from Heavy-Duty Diesel Vehicles: Review and Recent Data J. Air Waste Manag. Assoc. 56 10 1404 1419 2006 https://doi.org/10.1080/10473289.2006.10464551
  38. Joshi , M.C. et al. Reducing Diesel Engine Drive Cycle Fuel Consumption through Use of Cylinder Deactivation to Maintain Aftertreatment Component Temperature during Idle and Low Load Operating Conditions Front. Mech. Eng. 3 8 2017 https://doi.org/10.3389/fmech.2017.00008
  39. Ramesh , A. , Gosala , D. , Allen , C. , Joshi , M. et al. Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines SAE Technical Paper 2018-01-0384 2018 https://doi.org/10.4271/2018-01-0384
  40. Matheaus , A. , Singh , J. , Sanchez , L. , Evans , D. et al. Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles SAE Technical Paper 2020-01-0800 2020 https://doi.org/10.4271/2020-01-0800
  41. Ding , C. et al. Fuel Efficient Exhaust Thermal Management for Compression Ignition Engines during Idle via Cylinder Deactivation and Flexible Valve Actuation Int. J. Eng. Res. 17 6 619 630 2015 https://doi.org/10.1177/1468087415597413
  42. Joshi , M. , Gosala , D. , Allen , C. , Srinivasan , S. et al. Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles SAE Technical Paper 2018-01-0880 2018 https://doi.org/10.4271/2018-01-0880
  43. Allen , C.M. , Joshi , M.C. , Gosala , D.B. , Shaver , G.M. et al. Experimental Assessment of Diesel Engine Cylinder Deactivation Performance during Low-Load Transient Operations Int. J. Eng. Res. 22 2 606 615 2021 https://doi.org/10.1177/1468087419857597
  44. Neely , G.D. , Sharp , C. , and Rao , S. CARB Low NOx Stage 3 Program - Modified Engine Calibration and Hardware Evaluations SAE Technical Paper 2020-01-0318 2020 https://doi.org/10.4271/2020-01-0318
  45. Lu , X. et al. Impact of Cylinder Deactivation on Active Diesel Particulate Filter Regeneration at Highway Cruise Conditions Front. Mech. Eng. 1 9 2015 https://doi.org/10.3389/fmech.2015.00009
  46. Gosala , D.B. et al. Cylinder Deactivation during Dynamic Diesel Engine Operation Int. J. Eng. Res. 18 10 991 1004 2017 https://doi.org/10.1177/1468087417694000
  47. Archer , A. , and McCarthy , J. Jr. Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles SAE Technical Paper 2018-01-1284 2018 https://doi.org/10.4271/2018-01-1284
  48. Morris , A. , and McCarthy , J. The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP SAE Technical Paper 2020-01-1407 2020 https://doi.org/10.4271/2020-01-1407
  49. Yang , J. , Quan , L. , and Yang , Y. Excavator Energy-Saving Efficiency Based on Diesel Engine Cylinder Deactivation Technology Chin. J. Mech. Eng. 25 5 897 904 2012 https://doi.org/10.3901/cjme.2012.05.897
  50. Yang , S.-P. , Zhang , F.-J. , Zhao , C.-L. , Huang , Y. et al. Study on Torsional Vibration Characteristics of Crankshaft in Variable Displacement Diesel Engine Binggong Xuebao/Acta Armamentarii 32 1047 1052 2011
  51. Mo , H. , Huang , Y. , Mao , X. , and Zhuo , B. The Effect of Cylinder Deactivation on the Performance of a Diesel Engine Proc. Inst. Mech. Eng., Part D: J. Mech. Engr. Sci. 228 2 199 205 2013 https://doi.org/10.1177/0954407013503627
  52. Scassa , M. , George , S. , Nencioni , M. , Chen , S. et al. Dynamic Skip Fire Applied to a Diesel Engine for Improved Fuel Consumption and Emissions SAE Technical Paper 2019-01-0549 2019 https://doi.org/10.4271/2019-01-0549
  53. Scassa , M. , George , S. , Nencioni , M. , Chen , S. et al. Smart Cylinder Deactivation Strategies to Improve Fuel Economy and Pollutant Emissions for Diesel-Powered Applications SAE Technical Paper 2019-24-0055 2019 https://doi.org/10.4271/2019-24-0055
  54. 2019
  55. Kumar , M. , Jain , A. , and Chhaganlal Vora , K. Combustion Optimization and In-Cylinder NOx and PM Reduction by Using EGR and Split Injection Techniques SAE Technical Paper 2019-28-2560 2019 https://doi.org/10.4271/2019-28-2560
  56. Ko , E. , and Park , J. Diesel Mean Value Engine Modeling Based on Thermodynamic Cycle Simulation Using Artificial Neural Network Energies 12 14 2019 https://doi.org/10.3390/en12142823
  57. Piano , A. , Millo , F. , Sapio , F. , and Pesce , F.C. Multi-Objective Optimization of Fuel Injection Pattern for a Light-Duty Diesel Engine through Numerical Simulation SAE Int. J. Engines 11 6 1093 1107 2018 https://doi.org/10.4271/2018-01-1124
  58. Uppalapati , L.R. , Vernham , B. , and Wei , Y. Development and Validation of Engine Calibration Using 1D Predictive Models SAE Technical Paper 2019-01-1135 2019 https://doi.org/10.4271/2019-01-1135
  59. Babu , A. , Staaden , D. , Kokjohn , S. , and Dempsey , A. Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions SAE Technical Paper 2020-01-0302 2020 https://doi.org/10.4271/2020-01-0302
  60. Roberts , J. , Chuahy , F.D.F. , Kokjohn , S.L. , and Roy , S. Isolation of the Parametric Effects of Pre-Blended Fuel on Low Load Gasoline Compression Ignition (GCI) Fuel 237 522 535 2019 https://doi.org/10.1016/j.fuel.2018.09.150
  61. Gatowski , J.A. , Balles , E.N. , Chun , K.M. , Nelson , F.E. et al. Heat Release Analysis of Engine Pressure Data SAE Technical Paper 841359 1984 https://doi.org/10.4271/841359
  62. Dempsey , A.B. 2013
  63. 1998
  64. Tzanetakis , T. , Traver , M. , Costanzo , V. , Medina , R. et al. Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis SAE Technical Paper 2019-01-0263 2019 https://doi.org/10.4271/2019-01-0263
  65. Tzanetakis , T. , Voice , A.K. , and Traver , M.L. Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel SAE Int. J. Fuels Lubr. 11 4 319 335 2018 https://doi.org/10.4271/2018-01-0270
  66. Voice , A.K. , Tzanetakis , T. , and Traver , M. Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives SAE Technical Paper 2017-01-0871 2017 https://doi.org/10.4271/2017-01-0871
  67. Casey , M. and Robinson , C. A Method to Estimate the Performance Map of a Centrifugal Compressor Stage Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 7: Turbomachinery, Parts A, B, and C Vancouver, British Columbia, Canada 2011 1981 1993 https://doi.org/10.1115/GT2011-45502
  68. Bosch , W. The Fuel Rate Indicator: A New Measuring Instrument for Display of the Charistics of Individual Injection SAE Technical Paper 660749 1966 https://doi.org/10.4271/660749
  69. Zigler , B.T. , Walton , S.M. , Assanis , D. , Perez , E. et al. An Imaging Study of Compression Ignition Phenomena of Iso-Octane, Indolene, and Gasoline Fuels in a Single-Cylinder Research Engine J. Eng. Gas Turbines Power 130 5 52803 2008 https://doi.org/10.1115/1.2898720
  70. Liu , Y.C. , Savas , A.J. , and Avedisian , C.T. Comparison of the Burning Characteristics of Indolene and Commercial Grade Gasoline Droplets without Convection Energy & Fuels 26 9 5740 5749 2012 https://doi.org/10.1021/ef3007849
  71. Buck , J.R. , Daniel , M.M. , and Singer , A. Computer Explorations in Signals and Systems Using MATLAB P-H Signal Processing Series Second Upper Saddle River, NJ Prentice Hall 2002
  72. Shafer , D.S. and Zhang , Z. Introductory Statistics Saylor Foundation 2012
  73. Gosala , D.B. et al. Dynamic Cylinder Activation in Diesel Engines Int. J. Eng. Res. 20 8-9 849 861 2018 https://doi.org/10.1177/1468087418779937
  74. Ghosala , D. Fuel-Efficient Diesel Engine Aftertreatment Thermal Management via Various Cylinder Deactivation Strategies The SAE COMVEC Detroit, MI 2018
  75. 2016
  76. https://derc.wisc.edu/ 2019

Cited By