This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electrochemical Flue Gas Purification: A Review

Journal Article
03-14-04-0033
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 18, 2021 by SAE International in United States
Electrochemical Flue Gas Purification: A Review
Sector:
Citation: Hansen, K., "Electrochemical Flue Gas Purification: A Review," SAE Int. J. Engines 14(4):543-550, 2021, https://doi.org/10.4271/03-14-04-0033.
Language: English

References

  1. Kristenen , H.O. and Psaraftis , H. 2015
  2. Ghenu , A. , Rosant , J.M. , and Sini , J.F. Dispersion of Pollutants and Estimation of Emissions in a Street Canyon in Rouen, France Environ Model Softw 23 3 314 321 2008 https://doi.org/10.1016/j.envsoft.2007.05.017
  3. Granger , P. and Parvulescu , V.I. Catalytic NOx abatement Systems for Mobile Sources: From Three-Way to Lean Burn After-Treatment Technologies Chemical Reviews 111 5 3155 3207 2011 https://doi.org/10.1021/cr100168g
  4. Kammer Hansen , K. Solid State Electrochemical DeNOx—An Overview Appl. Catal. B: Environmental 100 3-4 427 432 2010 https://doi.org/10.1016/j.apcatb.2010.09.002
  5. Pancharatnam , S. , Huggins , R.A. , and Mason , D.M. Catalytic Decomposition of Nitric Oxide on Zirconia by Electrolytic Removal of Oxygen J. Electrochem. Soc. 122 7 869 875 1975 https://doi.org/10.1149/1.2134364
  6. Gür , T.M. and Huggins , R.A. Decomposition of Nitric Oxide on Zirconia in a Solid-State Electrochemical Cell J. Electrochem. Soc. 126 6 1067 1075 1979 https://doi.org/10.1149/1.2129175
  7. Stoukides , M. and Vayenas , C.G. The Effect of Electrochemical Oxygen Pumping on the Rate and Selectivity of Ethylene Oxidation on Polycrystalline Silver J. Catal. 70 1 137 146 1981 https://doi.org/10.1016/0021-9517(81)90323-7
  8. Stoukides , M. and Vayenas , C.G. Electrocatalytic Rate Enhancement of Propylene Epoxidation on Porous Silver Electrodes Using a Zirconia Oxygen Pump J. Electrochem. Soc. 131 4 839 845 1984 https://doi.org/10.1149/1.2115710
  9. Vayenas , C.G. , Bebelis , S. , and Neophytides , S. Non-Faradaic Electrochemical Modification of Catalytic Activity J. Phys. Chem. 92 18 5083 5085 1988 https://doi.org/10.1021/j100329a007
  10. Bebelis , S. and Vayenas , C.G. Non-Faradaic Electrochemical Modification of Catalytic Activity—1. The Case of Ethylene Oxidation on Pt J. Catal. 118 1 125 146 1989 https://doi.org/10.1016/0021-9517(89)90306-0
  11. Vayenas , C.G. , Bebelis , S. , Pliangos , C. , Brosda , S. et al. Electrochemical Activation of Catalysis New York Kluwer Academic/Plenum Publishers 2001 0-306-46719-4
  12. Hibino , T. Electrochemical Removal of NO and CH 4 from Oxidizing Atmosphere Chem. Lett. 5 927 930 1994 https://doi.org/10.1246/cl.1994.927
  13. Hibino , T. Medium-Temperature Electrolysis of NO and CH 4 under Lean-Burn Conditions Using Yttria-Stabilized Zirconia as a Solid Electrolyte J. Chem. Soc. Faraday Trans. 91 13 1955 1959 1995 https://doi.org/10.1039/FT9959101955
  14. Hibino , T. , Inoue , T. , and Sano , M. Electrochemical Reduction of NO by Alternating Current Electrolysis Using Yttria-Stabilized Zirconia as the Solid Electrolyte—Part I. Characterization of Alternating Current Electrolysis of NO Solid State Ionics 130 1 19 29 2000 https://doi.org/10.1016/S0167-2738(00)00581-6
  15. Hibino , T. , Inoue , T. , and Sano , M. Electrochemical Reduction of NO by Alternating Current Electrolysis Using Yttria-Stabilized Zirconia as the Solid Electrolyte—Part II. Modification of Pd Electrode by Coating with Rh Solid State Ionics 130 1 31 39 2000 https://doi.org/10.1016/S0167-2738(00)00508-72000-01-0478
  16. Bredikhin , S. , Maeda , K. , and Awano , M. NO Decomposition by an Electrochemical Cell with Mixed Oxide Working Electrode Solid State Ionics 144 1 1 9 2001 https://doi.org/10.1016/S0167-2738(01)00862-1
  17. Bredikhin , S. , Maeda , K. , and Awano , M. Peculiarity of NO Decomposition by Electrochemical cell with a Mixed Oxide Working Electrode J. Electrochem. Soc. 148 10 D133 D138 2001 https://doi.org/10.1149/1.1399278
  18. Awano , M. , Bredikhin , S. , Aronin , A. , Abrosimova , G. et al. NOx Decomposition by Electrochemical Reactor with Electrochemically Assembled Multilayer Electrode Solid State Ionics 175 1 605 608 2004 https://doi.org/10.1016/j.ssi.2004.01.073
  19. Bredikhin , S. , Abrosimova , G. , Aronin , A. , Hamamoto , K. et al. Pt-YSZ Cathode for Electrochemical Cells with Multilayer Functional Electrode J. Electrochem. Soc. 151 12 J95 J99 2004 https://doi.org/10.1149/1.1819836
  20. Aronin , A. , Abrosimova , G. , Bredikhin , S. , Matsuda , K. et al. Structure Evolution of an NiO-YSZ Electrocatalytic Electrode J. Am. Ceram. Soc. 88 5 1180 1185 2005 https://doi.org/10.1111/j.1551-2916.2005.00168.x
  21. Bredikhin , S. , Abrosimova , G. , Aronin , A. , and Awano , M. Electrochemical Cells with Multilayer Functional Electrodes - Part I. Reduction-Oxidation Reactions in a NiO-YSZ Electrocatalytic Electrode Ionics 12 1 33 39 2006 https://doi.org/10.1007/s11581-006-0001-y
  22. Awano , M. , Fujishiro , Y. , Hamamoto , K. , Katayama , S. et al. Advances in Nano-Structured Electrochemical Reactors for NOx Treatment in the Presence of Oxygen Int. J. Appl. Ceram. Technol. 1 3 277 286 2004 https://doi.org/10.111/j.1744-7402.2004.tb00180.x
  23. Hiramatsu , T. , Bredikhin , S. , Katayama , S. , Shiono , O. et al. High Selective deNOx Electrochemical Cell with Self-Assembled Electro-Catalytic Electrode J. Electroceram. 13 1-3 865 870 2004 https://doi.org/10.1007/s10832-004-5205-9
  24. Hamamoto , K. , Fujishiro , Y. , and Awano , M. Intermediate Temperature Electrochemical Reactor for NOx Decomposition J. Electrochem. Soc 153 11 D167 D170 2006 https://doi.org/10.1149/1.2335960
  25. Hamamoto , K. , Fujishiro , Y. , and Awano , M. Reduction and Reoxidation Reaction of Catalytic Layers in Electrochemical Cells for NOx Decomposition J. Electrochem. Soc 154 9 F172 F175 2007 https://doi.org/10.1149/1.2755777
  26. Bredikhin , S. , Hamamoto , K. , Fujishiro , Y. , and Awano , M. Electrochemical Reactors for NO Decomposition. Basic Aspects and a Future Ionics 15 3 285 299 2009 https://doi.org/10.1007/s11581-008-0249-5
  27. Shao , J. and Hansen , K.K. Optimization of an Electrochemical Cell with an Adsorption Layer for NOx Removal J. Solid State Electrochem. 16 3331 3340 2012
  28. Hamamoto , K. , Fujishiro , Y. , and Awano , M. Simultaneous Removal of Nitrogen Oxides and Diesel Soot Particulate in Nano-Structured Electrochemical Reactor Solid State Ionics 177 26-32 2297 2300 2006 https://doi.org/10.1016/j.ssi.2006.07.006
  29. Dinesen , J. , Nissen , S.S. , and Christensen , H. Electrochemical Diesel Particulate Filter SAE Technical Paper 980547 1998 https://doi.org/10.4271/980547
  30. Christensen , H. , Dinesen , J. , Engell , H.H. , and Kammer Hansen , K. Electrochemical Reactor for Exhaust Gas Purification SAE Technical Paper 1999-01-0472 1999 https://doi.org/10.4271/1999-01-0472
  31. Christensen , H. , Dinesen , J. , Engell , H.H. , Larsen , L.C. et al. Electrochemical Exhaust Gas Purification SAE Technical Paper 2000-01-0478 2000 https://doi.org/10.4271/2000-01-0478
  32. Christensen , H. and Rak , Z.S. A Novel Diesel Particulate Converter Catal. Today 75 1-4 451 457 2002 https://doi.org/10.1016/S0920-5861(02)00095-0
  33. Werchmeister , R.M.L. , Kammer Hansen , K. , and Mogensen , M. Electrochemical Removal of NOx with Porous Cell Stacks Mat. Res. Bull. 45 11 1554 1561 2010 https://doi.org/10.1016/j.materresbull.2010.07.028
  34. Andersen , K.B. , Bræstrup , F. , and Hansen , K.K. Fabrication of Highly Porous LSM/CGO Cell Stacks for Electrochemical Flue Gas Purification Ceram. Int. 39 2 2159 2163 https://doi.org/10.1016/j.ceramint.2012.07.085
  35. Traulsen , M.L. , and Kammer Hansen , K. Improvement of LSM15-CGO10 electrodes for electrochemical removal of NOx by KNO 3 and MnO x impregnation J. Electrochem. Soc. 158 12 P147 P161 2011 https://doi.org/10.1149/2.086112jes
  36. Traulsen , M.L. , Andersen , K.B. , and Kammer Hansen , K. NOx Conversion on LSM15-CGO10 Cell Stacks with BaO Impregnation J. Mat. Chem. 22 23 11792 11800 2012 https://doi.org/10.1039/C2JM31417G
  37. Grings , S.G. , Andersen , K.B. , Stamate , E. , Kaiser , A. et al. The Role of Pore-Formers on Grain Interior and Grain Boundary Conductivity in Tape-Cast Porous Sheets for Electrochemical Flue Gas Purification’ J. Ceram. Sci. Technol. 8 4 485 492 2017
  38. Shao , J. and Kammer Hansen , K. Electrochemical NOx Reduction on an LSM/CGO Symmetric Cell Modified by NOx Adsorbents J. Mater. Chem. A 1 7137 7146 2013
  39. Shao , J. and Kammer Hansen , K. NOx Reduction on Ag Electrochemical Cells with a K-Pt-Al2O3 Adsorption Layer J. Electrochem. Soc. 160 H294 H301 2013
  40. Shao , J. and Hansen , K.K. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy J. Electrochem. Soc. 160 H494 H501 2013
  41. Ippolito , D. , Andersen , K.B. , and Hansen , K.K. Electrochemical Oxidation of Propene by Use of LSM15/CGO(10) Electrochemical Reactor J. Electrochem. Soc. 159 6 P57 P64 2012 https://doi.org/10.1149/2.084206jes
  42. Yoshinobu , Y. , Tsuda , Y. , Ueda , H. , Nakanishi , Y. et al. Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction SAE Technical Paper 2010-01-0306 2010 https://doi.org/10.4271/2010-01-0306
  43. Shao , J. , Tao , Y. , and Kammer Hansen , K. Highly Selective NO x Reduction for Diesel Engine Exhaust via an Electrochemical System Electrochem. Comm. 72 36 40 2016
  44. Shao , J. , Cheng , Q. , Liu , Y. , Zhang , W. et al. Communication—Perovskite Electrochemical System for Highly Selective NO x Reduction of Diesel Engine Exhaust J. Electrochem. Soc. 165 10 H591 H593 2018

Cited By