This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reduction of Nitrogen Oxides by Injecting Nitric Oxide into a Hydrogen Engine: A Micro-kinetic Analysis

Journal Article
03-14-04-0028
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 03, 2021 by SAE International in United States
Reduction of Nitrogen Oxides by Injecting Nitric Oxide into a Hydrogen Engine: A Micro-kinetic Analysis
Sector:
Citation: Agarwal, S., Srivastava, V., Kherdekar, P., and Bhatia, D., "Reduction of Nitrogen Oxides by Injecting Nitric Oxide into a Hydrogen Engine: A Micro-kinetic Analysis," SAE Int. J. Engines 14(4):467-491, 2021, https://doi.org/10.4271/03-14-04-0028.
Language: English

References

  1. The Gazette of India http://egazette.nic.in/WriteReadData/2016/168300.pdf 2020
  2. Official Journal of the European Union http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:171:0001:0016:EN:PDF 2020
  3. Subramanian , V. , Mallikarjuna , J.M. , and Ramesh , A. Effect of Water Injection and Spark Timing on the Nitric Oxide Emission and Combustion Parameters of a Hydrogen Fuelled Spark Ignition Engine International Journal of Hydrogen Energy 32 9 1159 1173 2007 https://doi.org/10.1016/j.ijhydene.2006.07.022
  4. Shameer , P.M. , Ramesh , K. , Sakthivel , R. , and Purnachandran , R. Effects of Fuel Injection Parameters on Emission Characteristics of Diesel Engines Operating on Various Biodiesel: A Review Renewable and Sustainable Energy Reviews 67 1267 1281 2017 https://doi.org/10.1016/j.rser.2016.09.117
  5. Praveena , V. and Leenus Jesu Martin , M. A Review on Various after Treatment Techniques to Reduce NO x Emissions in a CI Engine Journal of the Energy Institute 91 5 704 720 2018 https://doi.org/10.1016/j.joei.2017.05.010
  6. Hamada , H. and Haneda , M. A Review of Selective Catalytic Reduction of Nitrogen Oxides with Hydrogen and Carbon Monoxide Applied Catalysis A: General 421 1 13 2012 https://doi.org/10.1016/j.apcata.2012.02.005
  7. Sindhu , R. , Rao Amba Prasad , G. , and Madhu Murthy , K. Effective Reduction of NO x Emissions from Diesel Engine Using Split Injections Alexandria Engineering Journal 57 3 1379 1392 2018 https://doi.org/10.1016/j.aej.2017.06.009
  8. Karthikeya Sharma , T. , Amba Prasad Rao , G. , and Madhu Murthy , K. Effective Reduction of NO x Emissions of a HCCI (Homogeneous Charge Compression Ignition) Engine by Enhanced Rate of Heat Transfer under Varying Conditions of Operation Energy 93 2102 2115 2015 https://doi.org/10.1016/j.energy.2015.10.083
  9. Serrano , J. , Jiménez-Espadafor , F.J. , Lora , A. , Modesto-López , L. et al. Experimental Analysis of NOx Reduction through Water Addition and Comparison with Exhaust Gas Recycling Energy 168 737 752 2019 https://doi.org/10.1016/j.energy.2018.11.136
  10. Dhyani , V. and Subramanian , K.A. Control of Backfire and NO x Emission Reduction in a Hydrogen Fueled Multi-Cylinder Spark Ignition Engine Using Cooled EGR and Water Injection Strategies International Journal of Hydrogen Energy 44 12 6287 6298 2019 https://doi.org/10.1016/j.ijhydene.2019.01.129
  11. Lee , J. , Lee , K. , Lee , J. , and Anh , B. High Power Performance with Zero NOx Emission in a Hydrogen-Fueled Spark Ignition Engine by Valve Timing and Lean Boosting Fuel 128 381 389 2014 https://doi.org/10.1016/j.fuel.2014.03.010
  12. Jain , A. , Singh , A.P. , and Agarwal , A.K. Effect of Split Fuel Injection and EGR on NO x and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine Energy 122 249 264 2017 https://doi.org/10.1016/j.energy.2017.01.050
  13. Kumar , B.R. , and Saravanan , S. Partially Premixed Low Temperature Combustion Using Dimethyl Carbonate (DMC) in a DI Diesel Engine for Favorable Smoke/NO x Emissions Fuel 180 396 406 2016 https://doi.org/10.1016/j.fuel.2016.04.060
  14. Jiménez-Espadafor , F.J. , Torres , M. , Velez , J.A. , Carvajal , E. et al. Experimental Analysis of Low Temperature Combustion Mode with Diesel and Biodiesel Fuels: A Method for Reducing NO x and Soot Emissions Fuel Processing Technology 103 57 63 2012 https://doi.org/10.1016/j.fuproc.2011.11.014
  15. Imtenan , S. , Varman , M. , Masjuki , H.H. , Kalam , M.A. et al. Impact of Low Temperature Combustion Attaining Strategies on Diesel Engine Emissions for Diesel and Biodiesels: A Review Energy Conversion and Management 80 329 356 2014 https://doi.org/10.1016/j.enconman.2014.01.020
  16. Reitz , R.D. and Duraisamy , G. Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines Progress in Energy and Combustion Science 46 12 71 2015 https://doi.org/10.1016/j.pecs.2014.05.003
  17. Heywood , J.B. Internal Combustion Engines Fundamentals New York McGraw-Hill 1988 567 586 0-07-028637-X
  18. Das , L.M. Hydrogen Engine: Research and Development (R&D) Programmes in Indian Institute of Technology (IIT), Delhi International Journal of Hydrogen Energy 27 9 953 965 2002 https://doi.org/10.1016/S0360-3199(01)00178-1
  19. Talibi , M. , Hellier , P. , and Ladommatos , N. The Effect of Varying EGR and Intake Air Boost on Hydrogen-Diesel Co-combustion in CI Engines International Journal of Hydrogen Energy 42 9 6369 6383 2017 https://doi.org/10.1016/j.ijhydene.2016.11.207
  20. Shin , B. , Cho , Y. , Han , D. , Song , S. et al. Hydrogen Effects on NO x Emissions and Brake Thermal Efficiency in a Diesel Engine under Low-Temperature and Heavy-EGR Conditions International Journal of Hydrogen Energy 36 10 6281 6291 2011 https://doi.org/10.1016/j.ijhydene.2011.02.059
  21. Bose , P.K. and Maji , D. An Experimental Investigation on Engine Performance and Emissions of a Single Cylinder Diesel Engine Using Hydrogen as Inducted Fuel and Diesel as Injected Fuel with Exhaust Gas Recirculation International Journal of Hydrogen Energy 34 11 4847 4854 2009 https://doi.org/10.1016/j.ijhydene.2008.10.077
  22. Unni , J.K. , Bhatia , D. , Dutta , V. , Das , L.M. et al. Development of Hydrogen Fuelled Low NO x Engine with Exhaust Gas Recirculation and Exhaust after Treatment SAE Int. J. Engines 10 1 46 54 2017 https://doi.org/10.4271/2017-26-0074
  23. Nelson , B.W. 2004
  24. Monticelli , O. , Loenders , R. , Jacobs , P.A. , and Martens , J.A. NO x Removal from Exhaust Gas from Lean Burn Internal Combustion Engines through Adsorption on FAU Type Zeolites Cation Exchanged with Alkali Metals and Alkaline Earth Metals Applied Catalysis B: Environmental 21 3 215 220 1999
  25. Clark , N.N. x https://doi.org/10.2172/913089 https://www.osti.gov/servlets/purl/913089 2020
  26. Krutzsch , B. , Wenninger , G. , Weibel , M. , Stapf , P. et al. Reduction of NO x in Lean Exhaust by Selective NO x -Recirculation (SNR-Technique) Part I: System and Decomposition Process SAE Technical Paper 982592 1998 https://doi.org/10.4271/982592
  27. Han , X. , Wei , X. , Schnell , U. , and Hein , K.R.G. Detailed Modeling of Hybrid Reburn/SNCR Processes for NO x Reduction in Coal-Fired Furnaces Combustion and Flame 132 3 374 386 2003 https://doi.org/10.1016/S0010-2180(02)00481-9
  28. Lissianski , V.V. , Zamansky , V.M. , and Maly , P.M. Effect of Metal-Containing Additives on NO x Reduction in Combustion and Reburning Combustion and Flame 125 3 1118 1127 2001 https://doi.org/10.1016/S0010-2180(01)00231-0
  29. Glarborg , P. , Alzueta , M.U. , Dam-Johansen , K. , and Miller , J.A. Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor Combustion and Flame 115 1-2 1 27 1998 https://doi.org/10.1016/S0010-2180(97)00359-3
  30. Miller , J.A. , Klippenstein , S.J. , and Glarborg , P. A Kinetic Issue in Reburning: The Fate of HCNO Combustion and Flame 135 3 357 362 2003 https://doi.org/10.1016/j.combustflame.2003.07.002
  31. Shmakov , A.G. , Korobeinichev , O.P. , Rybitskaya , I.V. , Chernov , A.A. et al. Formation and Consumption of NO in H 2 + O 2 + N 2 Flames Doped with NO or NH 3 at Atmospheric Pressure Combustion and Flame 157 3 556 565 2010 https://doi.org/10.1016/j.combustflame.2009.10.008
  32. Glarborg , P. , Østberg , M. , Alzueta , M.U. , Dam-Johansen , K. et al. The Recombination of Hydrogen Atoms with Nitric Oxide at High Temperatures Symposium (International) on Combustion 27 1 219 226 1998 https://doi.org/10.1016/S0082-0784(98)80408-6
  33. Verhelst , S. , and Wallner , T. Hydrogen-Fueled Internal Combustion Engines Progress in Energy and Combustion Science 35 490 527 2009
  34. Subramanian , V. , Mallikarjuna , J.M. , and Ramesh , A. Intake Charge Dilution Effects on Control of Nitric Oxide Emission in a Hydrogen Fueled SI Engine International Journal of Hydrogen Energy 32 2043 2056 2007
  35. Nande , A.M. , Wallner , T. , and Naber , J. Influence of Water Injection on Performance and Emissions of a Direct-Injection Hydrogen Research Engine SAE Technical Paper 2008-01-2377 2008 https://doi.org/10.4271/2008-01-2377
  36. Wallner , T. , Nande , A.M. , and Naber , J.D. Study of Basic Injection Configurations Using a Direct-Injection Hydrogen Research Engine SAE Int. J. Engines 2 1 1221 1230 https://doi.org/10.4271/2009-01-1418
  37. Kawamura , A. , Yanai , T. , Sato , Y. , Naganuma , K. et al. Summary and Progress of the Hydrogen ICE Truck Development Project SAE Int. J. Commer. Veh. 2 1 110 117 2009 https://doi.org/10.4271/2009-01-1922
  38. Kosmadakis , G.M. , Rakopoulos , C.D. , Demuynck , J. , De Paepe , M. et al. CFD Modeling and Experimental Study of Combustion and Nitric Oxide Emissions in Hydrogen-Fueled Spark-Ignition Engine Operating in a Very Wide Range of EGR Rates International Journal of Hydrogen Energy 37 10917 10934 2012
  39. Verhelst , S. , Landtsheere , J.D. , Smet , F.D. , Billiouw , V. et al. Effects of Supercharging, EGR and Variable Valve Timing on Power Emissions of Hydrogen Internal Combustion Engines SAE Int. J. Engines 1 1 647 656 2009 https://doi.org/10.4271/2008-01-1033
  40. Lee , K. , Huynh , T.C. , and Lee , J. A Study on Realization of High Performance without Backfire in a Hydrogen-Fueled Engine with External Mixture International Journal of Hydrogen Energy 35 13078 13087 2010
  41. Rawat , S.K. , Srivastava , V. , and Bhatia , D. Kinetic Analysis of the Role of Selective NO x Recirculation in Reducing NO x Emissions from a Hydrogen Engine Chemical Engineering Journal 377 120143 2019 https://doi.org/10.1016/j.cej.2018.10.080
  42. Krishnanunni , J. , Bhatia , D. , and Das , L.M. Experimental and Modelling Investigations on the Performance and Emission Characteristics of a Single Cylinder Hydrogen Engine International Journal of Hydrogen Energy 42 49 29574 29584 2017 https://doi.org/10.1016/j.ijhydene.2017.10.018
  43. Kherdekar , P.V. and Bhatia , D. Simulation of a Spark Ignited Hydrogen Engine for Minimization of NO x Emissions International Journal of Hydrogen Energy 42 7 4579 4596 2017 https://doi.org/10.1016/j.ijhydene.2016.10.074
  44. Morel , T. and Keribar , R. A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers SAE Technical Paper 850204 1985 https://doi.org/10.4271/850204
  45. Launder , B.E. and Spalding , D.B. The Numerical Computation of Turbulent Flows Computer Methods in Applied Mechanics and Engineering 3 2 269 289 1974 https://doi.org/10.1016/0045-7825(74)90029-2
  46. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 https://doi.org/10.4271/670931
  47. Ghojel , J.I. Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research International Journal of Engine Research 11 4 297 312 2010 https://doi.org/10.1243%2F14680874JER06510
  48. Labbe , N.J. 2013
  49. Glarborg , P. , Kristensen , P.G. , Dam-Johansen , K. , Alzueta , M.U. et al. Nitric Oxide Reduction by Non-Hydrocarbon Fuels. Implications for Reburning with Gasification Gases Energy & Fuels 14 4 828 838 2000 https://doi.org/10.1021/ef990186r
  50. Verhelst , S. Recent Progress in the Use of Hydrogen as a Fuel for Internal Combustion Engines International Journal of Hydrogen Energy 39 2 1071 1085 2014 https://doi.org/10.1016/j.ijhydene.2013.10.102
  51. Heffel , J.S.W. NO x Emission Reduction in a Hydrogen Fueled Internal Combustion Engine at 3000 rpm Using Exhaust Gas Recirculation International Journal of Hydrogen Energy 28 11 1285 1292 2003 https://doi.org/10.1016/S0360-3199(02)00289-6
  52. Mohammadi , A. , Shioji , M. , Nakai , Y. , Ishikura , W. et al. Performance and Combustion Characteristics of a Direct Injection SI Hydrogen Engine International Journal of Hydrogen Energy 32 2 296 304 2007 https://doi.org/10.1016/j.ijhydene.2006.06.005
  53. Maurya , R.K. , and Akhil , N. Development of a New Reduced Hydrogen Combustion Mechanism with NOx and Parametric Study of Hydrogen HCCI Combustion Using Stochastic Reactor Model Energy Conversion and Management 132 65 81 2017
  54. Duan , J. , Liu , F. , Yang , Z. , Sun , B. et al. Study on the NOx Emissions Mechanism of an HICE under High Load International Journal of Hydrogen Energy 42 22027 22035 2017
  55. Kawabata , Y. , Sakonji , T. , and Amano , T. The Effect of NOx on Knock in Spark-ignition Engines SAE Technical Paper 1999-01-0572 1999 https://doi.org/10.4271/1999-01-0572

Cited By