This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Auto-ignition and Detonation Induced by Density Gradient of Surrogate Lubricant under Boosted-Gasoline-Engine-Like Condition

Journal Article
03-14-03-0026
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 12, 2021 by SAE International in United States
Auto-ignition and Detonation Induced by Density Gradient of Surrogate Lubricant under Boosted-Gasoline-Engine-Like Condition
Sector:
Citation: Wang, C., Zhang, B., Tao, C., Wei, J. et al., "Auto-ignition and Detonation Induced by Density Gradient of Surrogate Lubricant under Boosted-Gasoline-Engine-Like Condition," SAE Int. J. Engines 14(3):439-453, 2021, https://doi.org/10.4271/03-14-03-0026.
Language: English

References

  1. Haenel , P. , de Bruijn , R. , Tomazic , D. , and Kleeberg , H. Analysis of the Impact of Production Lubricant Composition and Fuel Dilution on Stochastic Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines SAE Technical Paper 2019-01-0256 2019 https://doi.org/10.4271/2019-01-0256
  2. Kalghatgi , G. , Bradley , D. , Andrae , J. , and Harrison , A. The Nature of ‘Superknock’ and Its Origins in SI Engines IMechE Conference on Internal Combustion Engines: Performance, Fuel Economy and Emissions London Dec. 8-9, 2009
  3. Amann , M. , Alger , T. , and Mehta , D. The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines SAE Int. J. Engines 4 1 235 245 2011 https://doi.org/10.4271/2011-01-0339
  4. Bradley , D. , Morley , C. , Gu , X. , and Emerson , D. Amplified Pressure Waves during Auto-Ignition: Relevance to CAI Engines SAE Technical Paper 2002-01-2868 2002 https://doi.org/10.4271/2002-01-2868
  5. Bradley , D. and Kalghatgi , G.T. Influence of Autoignition Delay Time Characteristics of Different Fuels on Pressure Waves and Knock in Reciprocating Engines Combustion and Flame 156 2307 2318 2009 https://doi.org/10.1016/j.combustflame.2009.08.003
  6. Wang , Z. , Liu , H. , Song , T. , Qi , Y. et al. Relationship between Super-Knock and Pre-Ignition Int. J. Engine Res. 16 166 180 2015 https://doi.org/10.1177/1468087414530388
  7. Dahnz , C. , Spicher , U. , and Arcoumanis , D. Irregular Combustion in Supercharged Spark Ignition Engines Pre-Ignition and Other Phenomena Int. J. Engine Res. 11 485 498 2010 https://doi.org/10.1243/14680874JER609
  8. Peters , N. , Kerschgens , B. , and Paczko , G. Super-Knock Prediction Using a Refined Theory of Turbulence SAE Int. J. Engines 6 2 953 967 2013 https://doi.org/10.4271/2013-01-1109
  9. Kurtz , M. and Regele , J. Acoustic Timescale Characterisation of a One-Dimensional Model Hot Spot Combust. Theor. Model. 18 532 551 2014 https://doi.org/10.1080/13647830.2014.934922
  10. Winklhofer , E. , Hirsch , A. , Kapus , P. , Kortschak , M. et al. TC GDI Engines at Very High Power Density? Irregular Combustion and Thermal Risk SAE Technical Paper 2009-24-0056 2009 https://doi.org/10.4271/2009-24-0056
  11. Zaccardi , J. , Duval , L. , and Pagot , A. Development of Specific Tools for Analysis and Quantification of Pre-Ignition in a Boosted SI Engine SAE Int. J. Engines 2 1 1587 1600 2009 https://doi.org/10.4271/2009-01-1795
  12. Haenel , P. , Seyfried , P. , Kleeberg , H. , and Tomazic , D. Systematic Approach to Analyze and Characterize Pre-Ignition Events in Turbocharged Direct-Injected Gasoline Engines SAE Technical Paper 2011-01-0343 2011 https://doi.org/10.4271/2011-01-0343
  13. Okada , Y. , Miyashita , S. , Izumi , Y. , and Hayakawa , Y. Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine SAE Int. J. Engines 7 2 584 594 2014 https://doi.org/10.4271/2014-01-1218
  14. Wang , Z. , Xu , Y. , and Wang , J. Suppression of Super-Knock in TC-GDI Engine Using Two-Stage Injection in Intake Stroke (TSII) Sci. China Technol. Sci. 57 80 85 2014 https://doi.org/10.1007/s11431-013-5374-3
  15. Qi , Y. , Xu , Y. , Wang , Z. , and Wang , J. The Effect of Oil Intrusion on Superknock in Gasoline Engine SAE Technical Paper 2014-01-1224 2014 https://doi.org/10.4271/2014-01-1224
  16. Kassai , M. , Shiraishi , T. , and Noda , T. Fundamental Mechanism Analysis on the Underlying Processes of LSPI Using Experimental and Modeling Approaches Günther , M. and Sens , M. Knocking in Gasoline Engines Cham Springer 2017 https://doi.org/10.1007/978-3-319-69760-4_6
  17. Ohtomo , M. , Miyagawa , H. , Koike , M. , Yokoo , N. et al. Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet SAE Int. J. Fuels Lubr. 7 3 673 682 2014 https://doi.org/10.4271/2014-01-2627
  18. Dingle , S.F. , Cairns , A. , Zhao , H. , Williams , J. et al. Lubricant Induced Pre-Ignition in an Optical SI Engine SAE Technical Paper 2014-01-1222 2014 https://doi.org/10.4271/2014-01-1222
  19. Spicher , U. , Gohl , M. , Magar , M. , and Hadler , J. The Role of Engine Oil in Low-Speed Pre-Ignition MTZ Worldwide 77 60 63 2016 https://doi.org/10.1007/s38313-015-0079-6
  20. Welling , O. , Moss , J. , Williams , J. , and Collings , N. Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines SAE Int. J. Fuels Lubr. 7 1 1 8 2014 https://doi.org/10.4271/2014-01-1219
  21. Zahdeh , A. , Rothenberger , P. , Nguyen , W. , Anbarasu , M. et al. Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines SAE Int. J. Engines 4 1 246 273 2011 https://doi.org/10.4271/2011-01-0340
  22. Dahnz , C. , Han , K. , Spicher , U. , Magar , M. et al. Investigations on Pre-Ignition in Highly Supercharged SI Engines SAE Int. J. Engines 3 1 214 224 2010 https://doi.org/10.4271/2010-01-0355
  23. Takeuchi , K. , Fujimoto , K. , Hirano , S. , and Yamashita , M. Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines SAE Int. J. Fuels Lubr. 5 3 017 1024 2012 https://doi.org/10.4271/2012-01-1615
  24. Fujimoto , K. , Yamashita , M. , Hirano , S. , Kato , K. et al. Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine SAE Int. J. Fuels Lubr. 7 3 869 874 2014 https://doi.org/10.4271/2014-01-2785
  25. Ritchie , A. , Boese , D. , and Young , A. Controlling Low-Speed Pre-Ignition in Modern Automotive Equipment Part 3: Identification of Key Additive Component Types and Other Lubricant Composition Effects on Low-Speed Pre-Ignition SAE Int. J. Engines 9 2 832 840 2016 https://doi.org/10.4271/2016-01-0717
  26. Ito , T. , Abe , Y. , and Tanaka , J. Lubricating Oil Droplets in Cylinder on Abnormal Combustion in Supercharged SI Engine SAE Technical Paper 2018-32-0008 2018 https://doi.org/10.4271/2018-32-0008
  27. Nakamura , N. , Murakami , N. , Hiraishi , F. , and Hata , K. A Study Using Livengood-Woo Integral on Low Speed Pre-Ignition in Boosted SI Engine The 25th Internal Combustion Engine Symposium Tsukuba, Japan 2014
  28. Gu , X. , Emersona , D. , and Bradley , D. Modes of Reaction Front Propagation from Hot Spots Combustion and Flame 133 63 74 2003 https://doi.org/10.1016/S0010-2180(02)00541-2
  29. Zel’dovich , Y. Regime Classification of an Exothermic Reaction with Nonuniform Initial Conditions Combustion and Flame 39 2 211 214 1980 https://doi.org/10.1016/0010-2180(80)90017-6
  30. Kuti , O. , Yang , S. , Hourani , N. , Naser , N. et al. A fundamental Investigation into the Relationship between Lubricant Composition and Fuel Ignition Quality Fuel 160 605 613 2015 https://doi.org/10.1016/j.fuel.2015.08.026
  31. Distaso , E. , Amirante , R. , Calo , G. , De Palma , P. et al. Investigation of Lubricant Oil Influence on Ignition of Gasoline-Like Fuels by a Detailed Reaction Mechanism Energy Procedia 148 663 670 2018 https://doi.org/10.1016/j.egypro.2018.08.155
  32. Gupta , A. , Shao , H. , Remias , J. , Roos , J. et al. Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines SAE Technical Paper 2016-01-2278 2016 https://doi.org/10.4271/2016-01-2278
  33. Makhviladze , G. and Rogatykh , D. Nonuniformities in Initial Temperature and Concentration as a Cause of Explosive Chemical Reactions in Combustible Gases Combustion and Flame 87 347 356 1991 https://doi.org/10.1016/0010-2180(91)90118-U
  34. Liberman , M. , Kiverin , A. , and Ivanov , M. Regimes of Chemical Reaction Waves Initiated by Nonuniform Initial Conditions for Detailed Chemical Reaction Models Phys. Rev. E 85 5 056312 2012 https://doi.org/10.1103/PhysRevE.85.056312
  35. Luke , B. , Bradley , D. , Paczko , G. , and Peters , N. Engine Hot Spots: Modes of Auto-ignition and Reaction Propagation Combustion and Flame 166 80 85 2016 https://doi.org/10.1016/j.combustflame.2016.01.002
  36. Pan , J. , Dong , S. , Wei , H. , Li , T. et al. Temperature Gradient Induced Detonation Development Inside and Outside a Hot Spot for Different Fuels Combustion and Flame 205 269 277 2019 https://doi.org/10.1016/j.combustflame.2019.04.003
  37. Dai , P. , Qi , C. , and Chen , Z. Effects of Initial Temperature on Autoignition and Detonation Development in Dimethyl Ether/Air Mixtures with Temperature Gradient Proceedings of the Combustion Institute 36 3 3643 3650 2017 https://doi.org/10.1016/j.proci.2016.08.014
  38. Guerouani , A. , Robert , A. , and Zaccardi , J. Detonation Peninsula for TRF-Air Mixtures: Assessment for the Analysis of Auto-Ignition Events in Spark-Ignition Engines SAE Technical Paper 2018-01-1721 2018 https://doi.org/10.4271/2018-01-1721
  39. Bates , L. and Bradley , D. Deflagrative, Auto-ignitive, and Detonative Propagation Regimes in Engines Combustion and Flame 175 118 122 2017 https://doi.org/10.1016/j.combustflame.2016.05.023
  40. Wang , C. and Wen , J. Numerical Simulation of Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Air Mixtures with Concentration Gradients Int. J. Hydrogen Energy 42 7657 7663 2017 https://doi.org/10.1016/j.ijhydene.2016.06.107
  41. Ettner , F. , Vollmer , K. , and Sattelmayer , T. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures J. Combust 2014 1 15 2014 https://doi.org/10.1155/2014/686347
  42. Kawanabe , H. and Ishiyama , T. A Study on a Reduced Kinetic Model for n-Cetane and Heptamethylnonane Based on a PRF Reduced Kinetic Model SAE International 2012-01-1576 2012 https://doi.org/10.4271/2012-01-1576
  43. Distaso , E. , Amirante , R. , Galo , G. , De Palma , P. et al. Predicting Lubricant Oil Induced Pre-ignition Phenomena in Modern Gasoline Engines: The Reduced GasLube Reaction Mechanism Fuel 281 118709 2020 https://doi.org/10.1016/j.fuel.2020.118709
  44. Sarathy , S.M. , Westbrook , C.K. , Mehl , M. , Pitz , W.J. et al. Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes from C 7 to C 20 Combust Flame 158 2338 2357 2011 https://doi.org/10.1016/j.combustflame.2011.05.007

Cited By