Open Access

Numerical Investigation on Mixture Formation and Combustion Process of Innovative Piston Bowl Geometries in a Swirl-Supported Light-Duty Diesel Engine

Journal Article
03-14-02-0015
ISSN: 1946-3936, e-ISSN: 1946-3944
Published December 28, 2020 by SAE International in United States
Numerical Investigation on Mixture Formation and Combustion Process
                    of Innovative Piston Bowl Geometries in a Swirl-Supported Light-Duty Diesel
                    Engine
Sector:
Citation: Millo, F., Piano, A., Roggio, S., Bianco, A. et al., "Numerical Investigation on Mixture Formation and Combustion Process of Innovative Piston Bowl Geometries in a Swirl-Supported Light-Duty Diesel Engine," SAE Int. J. Engines 14(2):247-262, 2021, https://doi.org/10.4271/03-14-02-0015.
Language: English

References

  1. ICCT 2 2017
  2. Sanchez , F.P. , Bandivadekar , A. , and German , J. Estimated Cost of emission Reduction Technologies for LDVs Int. Counc. Clean Transp. Mar. 1 136 2012 https://theicct.org/sites/default/files/publications/ICCT_LDVcostsreport_2012.pdf
  3. Andersson , Ö. and Miles , P.C. Diesel and Diesel LTC Combustion Encyclopedia of Automotive Engineering 2014 1 36 Wiley Online Library https://doi.org/10.1002/9781118354179.auto120
  4. Miles , P.C. , and Andersson , Ö. A Review of Design Considerations for Light-Duty Diesel Combustion Systems International Journal of Engine Research 17 1 6 15 2016 https://doi.org/10.1177/1468087415604754
  5. Cornwell , R. and Conicella , F. 2014
  6. Styron , J. , Baldwin , B. , Fulton , B. , Ives , D. et al. Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development SAE Technical Paper 2011-01-0415 2011 https://doi.org/10.4271/2011-01-0415
  7. Yoo , D. , Kim , D. , Jung , W. , Kim , N. et al. Optimization of Diesel Combustion System for Reducing PM to Meet Tier4-Final Emission Regulation without Diesel Particulate Filter SAE Technical Paper 2013-01-2538 2013 https://doi.org/10.4271/2013-01-2538
  8. Kogo , T. , Hamamura , Y. , Nakatani , K. , Toda , T. et al. High Efficiency Diesel Engine with Low Heat Loss Combustion Concept - Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine SAE Technical Paper 2016-01-0658 2016 https://doi.org/10.4271/2016-01-0658
  9. Lückert , P. , Arndt , S. , Duvinage , F. , Kemmner , M. et al. The New Mercedes-Benz 4-Cylinder Diesel Engine OM654—The Innovative Base Engine of the New Diesel Generation 24th Aachen Colloquium Automobile and Engine Technology Aachen, Germany 2015 867 892
  10. Millo , F. , Piano , A. , Peiretti Paradisi , B. , Boccardo , G. et al. The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation SAE Technical Paper 2019-24-0092 2019 https://doi.org/10.4271/2019-24-0092
  11. Busch , S. , Zha , K. , Perini , F. , Reitz , R. et al. Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine SAE Technical Paper 2018-01-1794 2018 https://doi.org/10.4271/2018-01-1794
  12. Busch , S. , Zha , K. , Kurtz , E. , Warey , A. et al. Experimental and Numerical Studies of Bowl Geometry Impacts on Thermal Efficiency in a Light-Duty Diesel Engine SAE Technical Paper 2018-01-0228 2018 https://doi.org/10.4271/2018-01-0228
  13. Zha , K. , Busch , S. , Warey , A. , Peterson , R. et al. A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry SAE Int. J. Engines 11 6 783 804 2018 https://doi.org/10.4271/2018-01-0230
  14. Sandia National Laboratories https://ecn.sandia.gov/engines/small-bore-diesel-engine/experimental-data/piston-bowl-geometry-study/ 2020
  15. Perini , F. , Busch , S. , Zha , K. , Reitz , R. et al. Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine SAE Technical Paper 2019-24-0167 2019 https://doi.org/10.4271/2019-24-0167
  16. Eismark , J. , Andersson , M. , Christensen , M. , Karlsson , A. et al. Role of Piston Bowl Shape to Enhance Late-Cycle Soot Oxidation in Low-Swirl Diesel Combustion SAE Int. J. Engines 12 3 233 249 2019 https://doi.org/10.4271/03-12-03-0017
  17. Eismark , J. , Balthasar , M. , Karlsson , A. , Benham , T. et al. Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-Controlled, High-EGR, Heavy Duty Diesel Engine SAE Technical Paper 2009-01-2813 2009 https://doi.org/10.4271/2009-01-2813
  18. Eismark , J. and Balthasar , M. 2013
  19. Zhang , T. , Eismark , J. , Munch , K. , and Denbratt , I. Effects of a Wave-Shaped Piston Bowl Geometry on the Performance of Heavy Duty Diesel Engines Fueled with Alcohols and Biodiesel Blends Renewable Energy 148 512 522 2020 https://doi.Org/10.1016/j.renene.2019.10.057
  20. Eismark , J. , Christensen , M. , Andersson , M. , Karlsson , A. et al. Role of Fuel Properties and Piston Shape in Influencing Soot Oxidation in Heavy-Duty Low Swirl Diesel Engine Combustion Fuel 254 115568 2019 https://doi.Org/10.1016/j.fuel.2019.05.151
  21. Belgiorno , G. , Boscolo , A. , Dileo , G. , Numidi , F. et al. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency SAE Technical Paper 2020-37-0003 2020 https://doi.org/10.4271/2020-37-0003
  22. Millo , F. , Piano , A. , Peiretti Paradisi , B. , Marzano , M.R. et al. Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization Energies 13 1612 2020 https://doi.org/10.3390/en13071612
  23. Piano , A. , Millo , F. , Boccardo , G. , Rafigh , M. et al. Assessment of the Predictive Capabilities of a Combustion Model for a Modern Common Rail Automotive Diesel Engine SAE Technical Paper 2016-01-0547 2016 https://doi.org/10.4271/2016-01-0547
  24. Piano , A. , Millo , F. , Postrioti , L. , Biscontini , G. et al. Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies SAE Int. J. Engines 9 1 565 575 2016 https://doi.org/10.4271/2016-01-0563
  25. Piano , A. , Boccardo , G. , Millo , F. , Cavicchi , A. et al. Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector SAE Int. J. Engines 10 4 2129 2140 2017 https://doi.org/10.4271/2017-24-0012
  26. Frenklach , M. , and Wang , H. Detailed Modeling of Soot Particle Nucleation and Growth Symposium (International) on Combustion 23 1 1559 1566 1991 https://doi.org/10.1016/S0082-0784(06)80426-1
  27. Kazakov , A. , Wang , H. , and Frenklach , M. Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar Combustion and Flame 100 1-2 111 120 1995 https://doi.org/10.1016/0010-2180(94)00086-8
  28. Kazakov , A. , and Frenklach , M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combustion and Flame 114 3-4 484 501 1998 https://doi.org/10.1016/S0010-2180(97)00322-2
  29. Richards , K.J. , Senecal , P.K. , and Pomraning , E. Converge 2.3 Manual Madison, WI Convergent Science Inc. 2016
  30. Orszag , S.A. , Yakhot , V. , Flannery , W.S. , Boysan , F. et al. Renormalization Group Modeling and Turbulence Simulations Near-Wall Turbulent Flows 13 1031 1046 1993
  31. Amsden , A.A. 1997
  32. Reitz , R.D. , and Bracco , F.V. Mechanisms of Breakup of Round Liquid Jets Encyclopedia of Fluid Mechanism 3 233 249 1986
  33. Amsden , A.A. , O’Rourke , P.J. , and Butler , T.D. 1989
  34. Schmidt , D.P. , and Rutland , C.J. A New Droplet Collision Algorithm Journal of Computational Physics 164 1 62 80 2000 https://doi.org/10.1006/jcph.2000.6568
  35. O’Rourke , P. , and Amsden , A. The Tab Method for Numerical Calculation of Spray Droplet Breakup SAE Technical Paper 872089 1987 https://doi.org/10.4271/872089
  36. O’Rourke , P. , and Amsden , A. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model SAE Technical Paper 2000-01-0271 2000 https://doi.org/10.4271/2000-01-0271
  37. Zeuch , T. , Moréac , G. , Ahmed , S.S. , and Mauss , F. A Comprehensive Skeletal Mechanism for the Oxidation of n-Heptane Generated by Chemistry-Guided Reduction Combustion and Flame 155 4 651 674 2008 https://doi.Org/10.1016/j.combustflame.2008.05.007
  38. Dempsey , A. , Seiler , P. , Svensson , K. , and Qi , Y. A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems SAE Int. J. Engines 11 6 1399 1420 2018 https://doi.org/10.4271/2018-01-0242
  39. Miles , P.C. Turbulent Flow Structure in Direct-Injection, Swirl-Supported Diesel Engines Arcoumanis , C. and Kamimoto , T. Flow and Combustion in Reciprocating Engines Experimental Fluid Mechanics Berlin, Heidelberg Springer 2008 https://doi.org/10.1007/978-3-540-68901-0_4
  40. Perini , F. , Zha , K. , Busch , S. , Kurtz , E. et al. Piston Geometry Effects in a Light-Duty, Swirl-Supported Diesel Engine: Flow Structure Characterization International Journal of Engine Research 19 10 1079 1098 2018 https://doi.org/10.1177/1468087417742572
  41. Celik , I. , Yavuz , I. , Smirnov , A. , Smith , J. et al. Prediction of In-Cylinder Turbulence for IC Engines Combustion Science and Technology 153 1 339 368 2000 https://doi.org/10.1080/00102200008947269
  42. Lin , L. , Shulin , D. , Jin , X. , Jinxiang , W. et al. Effects of Combustion Chamber Geometry on In-Cylinder Air Motion and Performance in DI Diesel Engine SAE Technical Paper 2000-01-0510 2000 https://doi.org/10.4271/2000-01-0510
  43. Dolak , J. , Shi , Y. , and Reitz , R. A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load SAE Technical Paper 2010-01-1263 2010 https://doi.org/10.4271/2010-01-1263
  44. Pickett , L. , and López , J. Jet-Wall Interaction Effects on Diesel Combustion and Soot Formation SAE Technical Paper 2005-01-0921 2005 https://doi.org/10.4271/2005-01-0921
  45. Kurtz , E. , and Styron , J. An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine SAE Int. J. Engines 5 2 344 352 2012 https://doi.org/10.4271/2012-01-0423

Cited By