This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Fuel Properties and Composition on Low-Load Gasoline Compression Ignition Strategies

Journal Article
03-14-02-0010
ISSN: 1946-3936, e-ISSN: 1946-3944
Published November 30, 2020 by SAE International in United States
Effects of Fuel Properties and Composition on Low-Load Gasoline Compression Ignition Strategies
Sector:
Citation: Babu, A., Roberts, J., and Kokjohn, S., "Effects of Fuel Properties and Composition on Low-Load Gasoline Compression Ignition Strategies," SAE Int. J. Engines 14(2):151-171, 2021, https://doi.org/10.4271/03-14-02-0010.
Language: English

References

  1. ExxonMobil http://corporate.exxonmobil.com/en/energy/energy-outlook 2018
  2. Kokjohn , S.L. 2012
  3. Kokjohn , S. , Hanson , R. , Splitter , D. , Kaddatz , J. et al. Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines SAE Int. J. Engines 4 1 360 374 2011 https://doi.org/10.4271/2011-01-0357
  4. Kalghatgi , G. , and Johansson , B. Gasoline Compression Ignition Approach to Efficient, Clean and Affordable Future Engines Proc. Inst. Mech. Eng., Part D: J. Mech. Engr. Sci. 232 1 118 138 2018 https://doi.org/10.1177/0954407017694275
  5. Roberts , J.A. 2018
  6. Sellnau , M. , Sinnamon , J. , Hoyer , K. , and Husted , H. Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-Like Efficiency with Low CO2 Emissions SAE Int. J. Engines 4 1 2010 2022 2011 https://doi.org/10.4271/2011-01-1386
  7. Dec , J.E. , and Yang , Y. Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - Using Conventional Gasoline SAE Int. J. Engines 3 1 750 767 2010 https://doi.org/10.4271/2010-01-1086
  8. Bessonette , P.W. , Schleyer , C.H. , Duffy , K.P. , Hardy , W.L. et al. Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion SAE Technical Paper 2007-01-0191 2007 https://doi.org/10.4271/2007-01-0191
  9. Goyal , H. , and Kook , S. Ignition Process of Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Optical Engine Fuel 256 2019 https://doi.org/10.1016/j.fuel.2019.115844
  10. Tang , M. 2018
  11. Tang , M. , Pei , Y. , Zhang , Y. , Traver , M. et al. Effect of Fuel Chemical and Physical Properties on Spray and Ignition Characteristics Under Heavy-Duty Diesel Engine Conditions Proceedings of the ASME 2019 Internal Combustion Engine Division Fall Technical Conference. ASME 2019 Internal Combustion Engine Division Fall Technical Conference Chicago, IL Oct. 20-23, 2019
  12. Tang , M. et al. Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part I: Non-Reacting, Non-Vaporizing Sprays ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems Atlanta, GA May 2017
  13. Benajes , J. , Novella , R. , Garcia , A. , Domenech , V. et al. An Investigation on Mixing and Auto-ignition Using Diesel and Gasoline in a Direct-Injection Compression-Ignition Engine Operating in PCCI Combustion Conditions SAE Int. J. Engines 4 2 2590 2602 2011 https://doi.org/10.4271/2011-37-0008
  14. Kim , K. , Kim , D. , Jung , Y. , and Bae , C. Spray and Combustion Characteristics of Gasoline and Diesel in a Direct Injection Compression Ignition Engine Fuel 109 616 626 2013 https://doi.org/10.1016/j.fuel.2013.02.060
  15. Roberts , J. , Kokjohn , S. , Hou , D. , and Huang , Y. Performance of Gasoline Compression Ignition (GCI) with On Demand Reactivity Enhancement SAE Technical Paper 2018-01-0255 2018 https://doi.org/10.4271/2018-01-0255
  16. Lundgren , M. , Rosell , J. , Richter , M. , Andersson , Ö. et al. Optical Study on Combustion Transition from HCCI to PPC with Gasoline Compression Ignition in a HD Engine SAE Technical Paper 2016-01-0768 2016 https://doi.org/10.4271/2016-01-0768
  17. Kolodziej , C.P. , Ciatti , S. , Vuilleumier , D. , Das Adhikary , B. et al. Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure SAE Technical Paper 2014-01-1302 2014 https://doi.org/10.4271/2014-01-1302
  18. Weall , A. , and Collings , N. Gasoline Fuelled Partially Premixed Compression Ignition in a Light Duty Multi Cylinder Engine: A Study of Low Load and Low Speed Operation SAE Int. J. Engines 2 1 1574 1586 2009 https://doi.org/10.4271/2009-01-1791
  19. Sellnau , M. , Foster , M. , Hoyer , K. , Moore , W. et al. Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine SAE Int. J. Engines 7 2 835 851 2014 https://doi.org/10.4271/2014-01-1300
  20. Borgqvist , P. , Tuner , M. , Mello , A. , Tunestal , P. et al. The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC SAE Technical Paper 2012-01-1578 2012 https://doi.org/10.4271/2012-01-1578
  21. Borgqvist , P. , Tunestal , P. , and Johansson , B. Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions SAE Int. J. Engines 6 1 366 378 2013 https://doi.org/10.4271/2013-01-0902
  22. Kolodziej , C.P. and Ciatti , S.A. Effects of Injector Nozzle Inclusion Angle on Extending the Lower Load Limit of Gasoline Compression Ignition Using 87 AKI Gasoline Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference Columbus, IN 2014 https://doi.org/10.1115/ICEF2014-5632
  23. Hildingsson , L. , Kalghatgi , G. , Tait , N. , Johansson , B. et al. Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines SAE Technical Paper 2009-01-2648 2009 https://doi.org/10.4271/2009-01-2648
  24. Singh , E. , Badra , J. , Mehl , M. , and Sarathy , S.M. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures Energy & Fuels 31 2 1945 1960 2017 https://doi.org/10.1021/acs.energyfuels.6b02659
  25. Shibata , G. , and Urushihara , T. Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index SAE Technical Paper 2007-01-0220 2007 https://doi.org/10.4271/2007-01-0220
  26. Cannella , W. , Foster , M. , Gunter , G. , and Leppard , W. http://crcsite.wpengine.com/wp-content/uploads/2019/05/AVFL-24-FACE-Gasolines-Report-071414.pdf
  27. Babu , A. , Staaden , D. , Kokjohn , S. , and Dempsey , A. Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions SAE Technical Paper 2020-01-0302 2020 https://doi.org/10.4271/2020-01-0302
  28. Roberts , J. , Chuahy , F.D.F. , Kokjohn , S.L. , and Roy , S. Isolation of the Parametric Effects of Pre-Blended Fuel on Low Load Gasoline Compression Ignition (GCI) Fuel 237 522 535 2019 https://doi.org/10.1016/j.fuel.2018.09.150
  29. Gatowski , J.A. , Balles , E.N. , Chun , K.M. , Nelson , F.E. et al. Heat Release Analysis of Engine Pressure Data SAE Technical Paper 841359 1984 https://doi.org/10.4271/841359
  30. ISO 10054:1998 1998
  31. Dempsey , A.B. 2013
  32. Bingham , E.C. The Relation of Heat of Vaporization to Boiling-Point J. Am. Chem. Soc. 28 6 723 731 1906 https://doi.org/10.1021/ja01972a008
  33. Musculus , M.P.B. , Miles , P.C. , and Pickett , L.M. Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion Progress in Energy and Combustion Science 39 2-3 246 283 2013 https://doi.org/10.1016/j.pecs.2012.09.001
  34. Dumitrescu , C.E. , Polonowski , C. , Fisher , B.T. , Cheng , A.S. et al. An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine SAE Int. J. Fuels Lubr. 7 1 65 81 2014 https://doi.org/10.4271/2014-01-1260
  35. Dumitrescu , C.E. , Polonowski , C.J. , Fisher , B.T. , Lilik , G.K. et al. Diesel Fuel Property Effects on In-Cylinder Liquid Penetration Length: Impact on Smoke Emissions and Equivalence Ratio Estimates at the Flame Lift-Off Length Energy & Fuels 29 11 7689 7704 2015 https://doi.org/10.1021/acs.energyfuels.5b01754
  36. Pickett , L.M. , Manin , J. , Genzale , C.L. , Siebers , D.L. et al. Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction SAE International Journal of Engines 4 1 764 799 2011 https://doi.org/10.4271/2011-01-0686
  37. Yu , Y. , and Song , G. Numerical Study of Diesel Lift-Off Flame and Soot Formation under Low-Temperature Combustion Energy & Fuels 30 3 2035 2042 2016 https://doi.org/10.1021/acs.energyfuels.5b02808
  38. Zhang , J. et al. Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part II: Non-Reacting, Vaporizing Sprays the ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems Atlanta, GA May 2017
  39. Chuahy , F.D.F. , and Kokjohn , S.L. Effects of the Direct-Injected Fuel’s Physical and Chemical Properties on Dual-Fuel Combustion Fuel 207 729 740 2017 https://doi.org/10.1016/j.fuel.2017.06.039
  40. Groendyk , M.A. , and Rothamer , D. Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine SAE Int. J. Fuels Lubr. 8 1 200 213 2015 https://doi.org/10.4271/2015-01-0952
  41. Sellnau , M. , Moore , W. , Sinnamon , J. , Hoyer , K. et al. GDCI Multi-cylinder Engine for High Fuel Efficiency and Low Emissions SAE Int. J. Engines 8 2 775 790 2015 https://doi.org/10.4271/2015-01-0834
  42. Hanson , R. , Splitter , D. , and Reitz , R.D. Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions SAE Technical Paper 2009-01-1442 2009 https://doi.org/10.4271/2009-01-1442
  43. Ra , Y. , Loeper , P. , Reitz , R. , Andrie , M. et al. Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime SAE Technical Paper 2011-04-1182 2011 https://doi.org/10.4271/2011-01-1182
  44. Sjoberg , M. , and Dec , J.E. Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost SAE Int. J. Engines 3 1 84 106 2010 https://doi.org/10.4271/2010-01-0338
  45. Kolodziej , C. , Kodavasal , J. , Ciatti , S. , Som , S. et al. Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle SAE Technical Paper 2015-01-0832 2015 https://doi.org/10.4271/2015-01-0832
  46. Sjöberg , M. , and Dec , J.E. EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed SAE Technical Paper 2007-01-0051 2007 https://doi.org/10.4271/2007-01-0051
  47. Sjöberg , M. , Dec , J.E. , and Hwang , W. Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition SAE Technical Paper 2007-01-0207 2007 https://doi.org/10.4271/2007-01-0207
  48. Dec , J.E. , Sjöberg , M. , and Hwang , W. Isolating the Effects of EGR on HCCI Heat-Release Rates and NOX Emissions SAE Int. J. Engines 2 2 58 70 2009 https://doi.org/10.4271/2009-01-2665
  49. Nemati , A. , Barzegar , R. , Khalil , A. , and Khatamnezhad , H. Decreasing the Emissions of a Partially Premixed Gasoline Fueled Compression Ignition Engine by Means of Injection Characteristics and EGR Thermal Science 15 4 939 952 2011 https://doi.org/10.2298/tsci110227099n
  50. Zheng , M. , Reader , G.T. , and Hawley , J.G. Diesel Engine Exhaust Gas Recirculation--A Review on Advanced and Novel Concepts Energy Convers. Manage. 45 6 883 900 2004 https://doi.org/10.1016/S0196-8904(03)00194-8
  51. Mittal , V. , Heywood , J.B. , and Green , W.H. The Underlying Physics and Chemistry behind Fuel Sensitivity SAE Int. J. Fuels Lubr. 3 1 256 265 2010 https://doi.org/10.4271/2010-01-0617
  52. Kalghatgi , G. , Risberg , P. , and Ångstrom , H.-E. A Method of Defining Ignition Quality of Fuels in HCCI Engines SAE Technical Paper 2003-01-1816 2003 https://doi.org/10.4271/2003-01-1816
  53. Weall , A. , Szybist , J.P. , Edwards , K.D. , Foster , M. et al. HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit SAE Int. J. Engines 5 3 1149 1162 2012 https://doi.org/10.4271/2012-01-1134
  54. Heuser , B. , Kremer , F. , Pischinger , S. , Rohs , H. et al. An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel SAE Int. J. Engines 9 1 11 25 2015 https://doi.org/10.4271/2015-01-1801
  55. Westbrook , C.K. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems Proc. Combust. Inst. 28 1563 1577 2000
  56. Silke , E.J. , Pitz , W.J. , Westbrook , C.K. , Sjöberg , M. et al. Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions SAE Technical Paper 2008-01-0019 2008 https://doi.org/10.4271/2008-01-0019
  57. Naik , C.V. , Pitz , W. , Westbrook , C. , Sjöberg , M. et al. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine SAE Technical Paper 2005-01-3741 2005 https://doi.org/10.4271/2005-01-3741
  58. 2019

Cited By