This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Direct Water Injection on Combustion and Performance of Homogeneous Charge Compression Ignition Engine—A Computational Fluid Dynamics Analysis

Journal Article
03-14-01-0005
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 27, 2020 by SAE International in United States
Effect of Direct Water Injection on Combustion and Performance of Homogeneous Charge Compression Ignition Engine—A Computational Fluid Dynamics Analysis
Sector:
Citation: Mishra, S. and Mallikarjuna, J., "Effect of Direct Water Injection on Combustion and Performance of Homogeneous Charge Compression Ignition Engine—A Computational Fluid Dynamics Analysis," SAE Int. J. Engines 14(1):59-79, 2021, https://doi.org/10.4271/03-14-01-0005.
Language: English

References

  1. Onishi , S. , Jo , S. , Shoda , K. , Jo , P. et al. Active Thermo-Atmosphere Combustion(ATAC) - A New Combustion Process for Internal Combustion Engines SAE Technical Paper 790501 1979 https://doi.org/10.4271/790501
  2. Najt , P.M. and Foster , D.E. Compression-Ignited Homogeneous Charge Combustion SAE Technical Paper 830264 1983 https://doi.org/10.4271/830264
  3. Thring , R.H. Homogeneous Charge Compression Ignition (HCCI) Engines SAE Technical Paper 892068 1989 https://doi.org/10.4271/892068
  4. Stanglmaier , R.H. and Roberts , C.E. Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications SAE Technical Paper 1999-01-3682 1999 https://doi.org/10.4271/1999-01-3682
  5. Epping , K. , Aceves , S. , Bechtold , R. , and Dec , J. The Potential of HCCI Combustion for High Efficiency and Low Emissions SAE Technical Paper 2002-01-1923 2002 https://doi.org/10.4271/2002-01-1923
  6. Eng , J. Characterization of Pressure Waves in HCCI Combustion Reprinted From : Homogeneous Charge Compression Ignition Engines SAE Technical Paper 2002-01-2859 2002 https://doi.org/10.4271/2002-01-2859
  7. Saxena , S. and Bedoya , I. Physical Phenomena Affecting High Load Operating Limits for HCCI Engines and Strategies for Extending These Limits Progress in Energy and Combustion Science 39 5 457 488 2012 https://doi.org/10.1016/j.pecs.2013.05.002
  8. Yap , D. , Wyszynski , M.L. , Megaritis , A. , and Xu , H. Applying Boosting to Gasoline HCCI Operation with Residual Gas Trapping SAE Technical Paper 2005-01-2121 2005 https://doi.org/10.4271/2005-01-2121
  9. Yao , M. , Zhang , B. , Zheng , Z. , Chen , Z. et al. Effects of Exhaust Gas Recirculation on Combustion and Emissions of a Homogeneous Charge Compression Ignition Engine Fuelled with Primary Reference Fuels Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221 2 197 213 2007 https://doi.org/10.1243/09544070JAUTO102
  10. Yao , M. , Chen , Z. , Zheng , Z. , Zhang , B. et al. Study on the Controlling Strategies of Homogeneous Charge Compression Ignition Combustion with Fuel of Dimethyl Ether and Methanol Fuel 85 14-15 2046 2056 2006 https://doi.org/10.1016/j.fuel.2006.03.016
  11. Cairns , A. and Blaxill , H. The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition SAE Technical Paper 2005-01-0133 2005 https://doi.org/10.4271/2005-01-0133
  12. Jari , H. , Goran , H. , and Bengt , J. Operating Range in a Multi-Cylinder HCCI Engine Using Variable Compression Ratio SAE Technical Paper 2003-01-1829 2002 https://doi.org/10.4271/2003-01-1829
  13. Berntsson , A.W. and Denbratt , I. HCCI Combustion Using Charge Stratification for Combustion Control SAE Technical Paper 2007-01-0210 2007 https://doi.org/10.4271/2007-01-0210
  14. Aroonsrisopon , T. , Werner , P. , Waldman , J.O. , Sohm , V. et al. Expanding the HCCI Operation with the Charge Stratification SAE Technical Paper 2004-01-1756 2004 https://doi.org/10.4271/2004-01-1756
  15. Yun , H. , Wermuth , N. , and Najt , P. High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine SAE Int. J. Engines 4 1 1190 1201 2011 https://doi.org/10.4271/2011-01-0899
  16. Kuboyama , T. , Moriyoshi , Y. , Hatamura , K. , Takanashi , J. et al. A Study of Newly Developed HCCI Engine with Wide Operating Range Equipped with Blowdown Supercharging System SAE Int. J. Engines 5 2 51 66 2012 https://doi.org/10.4271/2011-01-1766
  17. Zhu , S. , Hu , B. , Akehurst , S. , Copeland , C. et al. A Review of Water Injection Applied on the Internal Combustion Engine Energy Conversion and Management 184 1 139 158 2019 https://doi.org/10.1016/j.enconman.2019.01.042
  18. Boretti , A. Water Injection in Directly Injected Turbocharged Spark Ignition Engines Applied Thermal Engineering 52 1 62 68 2013 https://doi.org/10.1016/j.applthermaleng.2012.11.016
  19. Wang , J.K. , Li , J.L. , Wu , M.H. , and Chen , R.H. Reduction of Nitric Oxide Emission from a SI Engine by Water Injection at the Intake Runner ASME International Mechanical Engineering Congress and Exposition, Proceedings 3 1 335 340 2010 https://doi.org/10.1115/IMECE2009-12517
  20. Tauzia , X. , Maiboom , A. , and Shah , S.R. Experimental Study of Inlet Manifold Water Injection on Combustion and Emissions of an Automotive Direct Injection Diesel Engine Energy 35 9 3628 3639 2010 https://doi.org/10.1016/j.energy.2010.05.007
  21. Srinivasan , N.K. and Michael , J.V. The Thermal Decomposition of Water International Journal of Chemical Kinetics 38 3 211 219 2006 https://doi.org/10.1002/kin.20172
  22. Roberts , C.E. , Naegeli , D. , and Chadwell , C. The Effect of Water on Soot Formation Chemistry SAE Technical Paper 2005-01-3850 2005 https://doi.org/10.4271/2005-01-3850
  23. Psota , M.A. , Easley , W.L. , Fort , T.H. , and Mellor , A.M. Water Injection Effects on NOx Emissions for Engines Utilizing Diffusion Flame Combustion SAE Technical Paper 971657 1997 https://doi.org/10.4271/971657
  24. Hountalas , D.T. , Mavropoulos , G.C. , and Zannis , T.C. Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy-Duty Diesel Engines SAE Technical Paper 2007-01-0120 2006 https://doi.org/10.4271/2007-01-0120
  25. Bedford , F. , Rutland , C. , Dittrich , P. , Raab , A. et al. Effects of Direct Water Injection on DI Diesel Engine Combustion SAE Technical Paper 2000-01-2938 2000 https://doi.org/10.4271/2000-01-2938
  26. Brusca , S. and Lanzafame , R. Water Injection in IC - SI Engines to Control Detonation and to Reduce Pollutant Emissions SAE Technical Paper 2003-01-1912 2003 https://doi.org/10.4271/2003-01-1912
  27. Christensen , M. and Johansson , B. Homogeneous Charge Compression Ignition with Water Injection SAE Technical Paper 1999-01-0182 1999 https://doi.org/10.4271/1999-01-0182
  28. Iwashiro , Y. , Tsurushima , T. , Nishijima , Y. , Asaumi , Y. et al. Fuel Consumption Improvement and Operation Range Expansion in HCCI by Direct Water Injection SAE Technical Paper 2002-01-0105 2002 https://doi.org/10.4271/2002-01-0105
  29. Wouters , C. , Ottenw , T. , Lehrheuer , B. , Pischinger , S. et al. Evaluation of the Potential of Direct Water Injection in HCCI Combustion SAE Technical Paper 2019-01-2165 2020 https://doi.org/10.4271/2019-01-2165
  30. Lawler , B. , Splitter , D. , Szybist , J. , and Kaul , B. Thermally Stratified Compression Ignition: A New Advanced Low-Temperature Combustion Mode with Load Flexibility Applied Energy 189 122 132 2017 https://doi.org/10.1016/j.apenergy.2016.11.034
  31. Boldaji , R.M. , Sofianopoulos , A. , Mamalis , S. , and Lawler , B. CFD Simulations of the Effect of Water Injection Characteristics on TSCI: A New, Load-Flexible, Advanced Combustion Concept ASME Internal Combustion Engine Division Fall Technical Conference Seattle, Washington, USA 2017 https://doi.org/10.1115/ICEF2017-3662
  32. Boldaji , R.M. , Sofianopoulos , A. , Mamalis , S. , and Lawler , B. Computational Fluid Dynamics Investigations of the Effect of Water Injection Timing on Thermal Stratification and Heat Release in Thermally Stratified Compression Ignition Combustion International Journal of Engine Research 20 5 555 569 2019 https://doi.org/10.1177/1468087418767451
  33. Boldaji , R.M. , Sofianopoulos , A. , Mamalis , S. , and Lawler , B. Effects of Mass, Pressure, and Timing of Injection on the Efficiency and Emissions Characteristics of TSCI Combustion with Direct Water Injection SAE Technical Paper 2018-01-0178 2018 https://doi.org/10.4271/2018-01-0178
  34. Raut , A.A. and Mallikarjuna , J.M. Effect of Water Injection and Spatial Distribution on Combustion, Emission, and Performance of GDI Engine-A CFD Analysis SAE Technical Paper 2018-01-1725 2018 https://doi.org/10.4271/2018-01-1725
  35. Raut , A.A. and Mallikarjuna , J.M. Effects of Direct Water Injection and Injector Configurations on Performance and Emission Characteristics of a Gasoline Direct Injection Engine: A Computational Fluid Dynamics Analysis International Journal of Engine Research 13 1 3 13 2019 https://doi.org/10.1177/1468087419890418
  36. Raut , A.A. , Mallikarjuna , J.M. , and Mallikarjuna , J.M. Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine—A CFD Analysis SAE Int. J. Engines 13 1 3 13 2019 https://doi.org/10.4271/03-13-01-0002
  37. Bhagat , M. , Cung , K. , Johnson , J. , Lee , S.Y. et al. Experimental and Numerical Study of Water Spray Injection at Engine-Relevant Conditions SAE Technical Paper 2013-01-0250 2013 https://doi.org/10.4271/2013-01-0250
  38. Richards , K.J. and Senecal , P.K. 2019
  39. Babajimopoulos , A. , Assanis , D.N. , Flowers , D.L. , Aceves , S.M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines International Journal of Engine Research 6 5 497 512 2005 https://doi.org/10.1243/146808705X30503
  40. Senecal , P.K. , Pomraning , E. , Richards , K.J. , Briggs , T.E. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 https://doi.org/10.4271/2003-01-1043
  41. Liu , Y.D. , Jia , M. , Xie , M.Z. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy and Fuels 26 12 7069 7083 2012 https://doi.org/10.1021/ef301242b
  42. Costa , M. , Sorge , U. , and Allocca , L. CFD Optimization for GDI Spray Model Tuning and Enhancement of Engine Performance Advances in Engineering Software 49 1 43 53 2012 https://doi.org/10.1016/j.advengsoft.2012.03.004
  43. Lasheras , J.C. , Villermaux , E. , and Hopfinger , E.J. Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet Journal of Fluid Mechanics 357 351 379 1998 https://doi.org/10.1017/S0022112097008070
  44. Jo , H. , Ferrão , P. , and Fournier , J. Analysis of the Spray Wall Impingement of Urea-Water Solution for Automotive SCR De-NOx Systems Automotive SCR De-NOx Systems Energy Procedia 158 1936 1941 2019 https://doi.org/10.1016/j.egypro.2019.01.448

Cited By