This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment

Journal Article
03-13-05-0047
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 12, 2020 by SAE International in United States
Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment
Sector:
Citation: Beik, Y., Dziewiątkowski, M., and Szpica, D., "Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment," SAE Int. J. Engines 13(5):739-759, 2020, https://doi.org/10.4271/03-13-05-0047.
Language: English

References

  1. De Carvalho , A.V. Jr. Natural Gas and Other Alternative Fuels for Transportation Purposes Energy 10 2 187 215 1985 https://doi.org/10.1016/0360-5442(85)90083-0
  2. Streimikiene , D. , Baležentis , T. , and Baležentiene , L. Comparative Assessment of Road Transport Technologies Renewable and Sustainable Energy Reviews 20 611 618 2013 https://doi.org/10.1016/j.rser.2012.12.021
  3. Raslavičius , L. , Keršys , A. , Mockus , S. , Keršiene , N. et al. Liquefied Petroleum Gas (LPG) as a Medium-Term Option in the Transition to Sustainable Fuels and Transport Renewable and Sustainable Energy Reviews 32 513 525 2014 https://doi.org/10.1016/j.rser.2014.01.052
  4. Wendeker , M. , Jakliński , P. , Czarnigowski , J. , Boulet , P. et al. Operational Parameters of LPG Fueled SI Engine - Comparison of Simultaneous and Sequential Port Injection SAE Technical Paper 2007-01-2051 2007 https://doi.org/10.4271/2007-01-2051
  5. Gül , T. , Kypreos , S. , Turton , H. , and Barreto , L. An Energy-Economic Scenario Analysis of Alternative Fuels for Personal Transport Using the Global Multi-Regional MARKAL Model (GMM) Energy 34 10 1423 1437 2009 https://doi.org/10.1016/j.energy.2009.04.010
  6. Liu , Y. , and Helfand , G.E. The Alternative Motor Fuels Act, Alternative-Fuel Vehicles, and Greenhouse Gas Emissions Transportation Research Part A: Policy and Practice 43 8 755 764 2009 https://doi.org/10.1016/j.tra.2009.07.005
  7. WLPGA https://www.wlpga.org/publication/statistical-review-of-global-lp-gas-2014/ 2018
  8. Onishi , S. , Jo , S.H. , Shoda , K. , Jo , P.D. et al. Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines SAE Technical Paper 790501 1979 https://doi.org/10.4271/790501
  9. Jeuland , N. , Montagne , X. , and Duret , P. New HCCI/CAI Combustion Process Development: Methodology for Determination of Relevant Fuel Parameters Oil and Gas Science and Technology 59 6 571 579 2004 https://doi.org/10.2516/ogst:2004041
  10. Haraldsson , G. Closed-Loop Combustion Control of a Multi Cylinder HCCI Engine Using Variable Compression Ratio and Fast Thermal Management Lund Division of Combustion Engines, Lund Institute of Technology 2005
  11. Mikulski , M. , Balakrishnan , P.R. , Doosje , E. , and Bekdemir , C. Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine SAE Technical Paper 2018-01-0254 2018 https://doi.org/10.4271/2018-01-0254
  12. Duraisamy , G. , Rangasamy , M. , and Govindan , N. A Comparative Study on Methanol/Diesel and Methanol/PODE Dual Fuel RCCI Combustion in an Automotive Diesel Engine Renewable Energy 145 542 556 2020 https://doi.org/10.1016/j.renene.2019.06.044
  13. Kakaee , A.H. , Nasiri-Toosi , A. , Partovi , B. , and Paykani , A. Effects of Piston Bowl Geometry on Combustion and Emissions Characteristics of a Natural Gas/Diesel RCCI Engine Applied Thermal Engineering 102 1462 1472 2016 https://doi.org/10.1016/j.applthermaleng.2016.03.162
  14. Leduc , P. , Dubar , B. , Ranini , A. , and Monnier , G. Downsizing of Gasoline Engine: An Efficient Way to Reduce CO 2 Emissions Oil and Gas Science and Technology 58 1 115 127 2003 https://doi.org/10.2516/ogst:2003008
  15. Johnson , E. LPG: A Secure, Cleaner Transport Fuel? A Policy Recommendation for Europe Energy Policy 31 15 1573 1577 2003 https://doi.org/10.1016/S0301-4215(02)00223-9
  16. 2 https://ec.europa.eu/clima/policies/transport/vehicles/cars_en 2020
  17. Hunicz , J. , and Kordos , P. An Experimental Study of Fuel Injection Strategies in CAI Gasoline Engine Experimental Thermal and Fluid Science 35 1 243 252 2011 https://doi.org/10.1016/j.expthermflusci.2010.09.007
  18. Anandarajah , G. , McDowall , W. , and Ekins , P. Decarbonising Road Transport with Hydrogen and Electricity: Long Term Global Technology Learning Scenarios International Journal of Hydrogen Energy 38 8 3419 3432 2013 https://doi.org/10.1016/j.ijhydene.2012.12.110
  19. Bleischwitz , R. , and Bader , N. Policies for the Transition towards a Hydrogen Economy: The EU Case Energy Policy 38 10 5388 5398 2010 https://doi.org/10.1016/j.enpol.2009.03.041
  20. Litschke , A. , and Knitschky , G. Future Development in Road Freight Transport Regarding More Environmentally Friendly Vehicle Technologies Procedia - Social and Behavioral Sciences 48 1557 1567 2012 https://doi.org/10.1016/j.sbspro.2012.06.1131
  21. Kalligeros , S. , Zannikos , F. , Stournas , S. , Lois , E. et al. Impact of Gasoline Quality on Engine Performance and Emissions 8th International Conference on Environmental Science and Technology Lemnos Island, Greece Sept. 8-10, 2003 340 345
  22. Dimitrova , Z. , and Maréchal , F. Gasoline Hybrid Pneumatic Engine for Efficient Vehicle Powertrain Hybridization Applied Energy 151 168 177 2015 https://doi.org/10.1016/j.apenergy.2015.03.057
  23. Raslavičius , L. , Azzopardi , B. , Keršys , A. , Starevičius , M. et al. Electric Vehicles Challenges and Opportunities: Lithuanian Review Renewable and Sustainable Energy Reviews 42 786 800 2015 https://doi.org/10.1016/j.rser.2014.10.076
  24. Raslavičius , L. , Keršys , A. , and Makaras , R. Management of Hybrid Powertrain Dynamics and Energy Consumption for 2WD, 4WD, and HMMWV Vehicles Renewable and Sustainable Energy Reviews 68 380 396 2017 https://doi.org/10.1016/j.rser.2016.09.109
  25. Grigor’ev , M.A. , Naumovich , N.I. , and Belousov , E.V. A Traction Electric Drive for Electric Cars Russian Electrical Engineering 86 12 731 734 2015 https://doi.org/10.3103/S1068371215120111
  26. Simon , M. Pneumatic Vehicle, Research and Design Procedia Engineering 181 200 205 2017 https://doi.org/10.1016/j.proeng.2017.02.370
  27. Bhale , P.V. , Ardhapurkar , P.M. , and Deshpande , N.V. Experimental Investigations to Study the Comparative Effect of LPG and Gasoline on Performance and Emissions of SI Engine Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division April 5–7, 2005 Chicago, Illinois, USA 289 294 https://doi.org/10.1115/ICES2005-1065
  28. Murillo , S. et al. Exhaust Emissions from Diesel, LPG, and Gasoline Low-Power Engines Energy Sources, Part A: Recovery, Utilization and Environmental Effects 30 12 1065 1073 2008 https://doi.org/10.1080/15567030701258170
  29. Gumus , M. Effects of Volumetric Efficiency on the Performance and Emissions Characteristics of a Dual Fueled (Gasoline and LPG) Spark Ignition Engine Fuel Processing Technology 92 10 1862 1867 2011 https://doi.org/10.1016/j.fuproc.2011.05.001
  30. Myung , C.-L. et al. Mobile Source Air Toxic Emissions from Direct Injection Spark Ignition Gasoline and LPG Passenger Car under Various In-Use Vehicle Driving Modes in Korea Fuel Processing Technology 119 19 31 2014 https://doi.org/10.1016/j.fuproc.2013.10.013
  31. Mitukiewicz , G. , Dychto , R. , and Leyko , J. Relationship between LPG Fuel and Gasoline Injection Duration for Gasoline Direct Injection Engines Fuel 153 526 534 2015 https://doi.org/10.1016/j.fuel.2015.03.033
  32. Szpica , D. , and Czaban , J. The Assessment of External and Operating Indexes of LPG Fueled Engines Combustion Engines 3 146 68 75 2011
  33. Borawski , A. Modification of a Fourth Generation LPG Installation Improving the Power Supply to a Spark Ignition Engine Eksploatacja i Niezawodnosc 17 1 1 6 2015 https://doi.org/10.17531/ein.2015.1.1
  34. AC https://www.ac.com.pl 2020
  35. Czarnigowski , J. Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu Lublin Wydawnictwo Politechniki Lubelskiej 2012
  36. Duk , M. , and Czarnigowski , J. The Method for Indirect Identification Gas Injector Opening Delay Time Przeglad Elektrotechniczny 88 10B 59 63 2012
  37. Szpica , D. , and Czaban , J. Operational Assessment of Selected Gasoline and LPG Vapour Injector Dosage Regularity Mechanika 20 5 480 488 2014 https://doi.org/10.5755/j01.mech.20.5.7780
  38. Szpica , D. Investigating Fuel Dosage Non-Repeatability of Low-Pressure Gas-Phase Injectors Flow Measurement and Instrumentation 59 147 156 2018 https://doi.org/10.1016/j.flowmeasinst.2017.12.009
  39. Szpica , D. The Assessment of the Influence of Temperature Differences in Individual Ducts of an Intake Manifold on the Unevenness of Air Filling in a Cylinder of a Combustion Engine Combustion Engines 2 44 53 2008
  40. Szpica , D. Research on the Influence of LPG/CNG Injector Outlet Nozzle Diameter on Uneven Fuel Dosage Transport 33 1 186 196 2018 https://doi.org/10.3846/16484142.2016.1149884
  41. Mieczkowski , G. Electromechanical Characteristics of Piezoelectric Converters with Freely Defined Boundary Conditions and Geometry Mechanika 22 4 265 272 2016 https://doi.org/10.5755/j01.mech.22.4.12764
  42. Mieczkowski , G. , Borawski , A. , and Szpica , D. Static Electromechanical Characteristic of a Three-Layer Circular Piezoelectric Transducer Sensors (Switzerland) 20 1 222 2020 https://doi.org/10.3390/s20010222
  43. Garbala , K. , Piekarski , W. , Andrzejewska , S. , and Witaszek , K. Analysis of Operating Parameters and Indicators of a Compression Ignition Engine Fuelled with LPG Scientific Journal of Silesian University of Technology. Series Transport 93 13 22 2016 https://doi.org/10.20858/sjsutst.2016.93.2
  44. Setiyo , M. , Waluyo , B. , Anggono , W. , and Husni , M. Performance of Gasoline/LPG BI-Fuel Engine of Manifold Absolute Pressure Sensor (MAPS) Variations Feedback ARPN Journal of Engineering and Applied Science 11 7 4707 4712 2016
  45. Dziewiatkowski , M. , Szpica , D. , and Borawski , A. Evaluation of Impact of Combustion Engine Controller Adaptation Process on Level of Exhaust Gas Emissions in Gasoline and Compressed Natural Gas Supply Process Engineering for Rural Development 19 541 548 2020 https://doi.org/10.22616/ERDev2020.19.TF122
  46. Official Journal of the European Union 2017
  47. Official Journal of the European Union 2018
  48. United Nations Economic Commission for Europe 2011 http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4e.pdf
  49. United Nations Economic Commission for Europe 2014 http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29r1998agr-rules/ECE-TRANS-180a15app1e.pdf
  50. Ristovski , Z.D. , Jayaratne , E.R. , Morawska , L. , Ayoko , G.A. et al. Particle and Carbon Dioxide Emissions from Passenger Vehicles Operating on Unleaded Petrol and LPG Fuel Science of the Total Environment 345 1-3 93 98 2005 https://doi.org/10.1016/j.scitotenv.2004.10.021
  51. Bielaczyc , P. , and Woodburn , J. Trends in Automotive Emission Legislation: Impact on LD Engine Development, Fuels, Lubricants and Test Methods: A Global View, with a Focus on WLTP and RDE Regulations Emission Control Science and Technology 5 86 98 2019 https://doi.org/10.1007/s40825-019-0112-3
  52. Waluś , K.J. , Warguła , Ł. , Krawiec , P. , and Adamiec , J.M. Legal Regulations of Restrictions of Air Pollution Made by Non-Road Mobile Machinery—The Case Study for Europe: A Review Environmental Science and Pollution Research 25 4 3243 3259 2018 https://doi.org/10.1007/s11356-017-0847-8
  53. Warguła , Ł. , Krawiec , P. , Waluś , K.J. , and Kukla , M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System Applied Sciences 10 8 2727 2020 https://doi.org/10.3390/app10082727
  54. Warguła , Ł. , Kukla , M. , Krawiec , P. , and Wieczorek , B. Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel Energies 13 11 2995 2020 https://doi.org/10.3390/en13112995
  55. WLTP http://wltpfacts.eu/ 2019
  56. Mock , P. 2011 http://www.theicct.org/sites/default/files/publications/WLTP4_2011.pdf 2019
  57. Czaban , J. , and Szpica , D. Drive Test System To Be Used on Roller Dynamometer Mechanika 19 5 600 605 2013 https://doi.org/10.5755/j01.mech.19.5.5542
  58. Marotta , A. , Tutuianu , M. , and Martini , G. Europe-Centric Light Duty Test Cycle and Differences with Respect to the WLTP Cycle Luxembourg Publications Office 2012 https://doi.org/10.2790/53651
  59. Barlow , T. , Latham , S. , Mccrae , I. , and Boulter , P. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions Bracknell IHS 2009
  60. Jiménez-Palacios , J.L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing Massachusetts Institute of Technology Cambridge 1999 https://doi.org/10.1016/S0006-291X(02)00320-0\rS0006-291X(02)00320-0
  61. Guzzella , L. , Sciarretta , A. , Guzzella , L. , and Sciarretta , A. Vehicle Energy and Fuel Consumption - Basic Concepts Vehicle Propulsion Systems, Introduction to Modeling and Optimization Guzzella , L. , Sciarretta , A. Springer-Verlag Berlin Heidelberg 2013
  62. Marotta , A. , Pavlovic , J. , Ciuffo , B. , Serra , S. et al. Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure Environmental Science and Technology 49 14 8315 8322 2015 https://doi.org/10.1021/acs.est.5b01364
  63. Pavlovic , J. , Ciuffo , B. , Fontaras , G. , Valverde , V. et al. How Much Difference in Type-Approval CO2 Emissions from Passenger Cars in Europe Can Be Expected from Changing to the New Test Procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice 111 136 147 2018 https://doi.org/10.1016/j.tra.2018.02.002
  64. Liu , Q. et al. Comparative Study on Combustion and Thermodynamics Performance of Gasoline Direct Injection (GDI) Engine under Cold Start and Warm-Up NEDC Energy Conversion and Management 181 663 673 2019 https://doi.org/10.1016/j.enconman.2018.12.043
  65. Shen , K. , Chang , L. , Chen , H. , Zhang , Z. et al. Experimental Study on the Effects of Exhaust Heat Recovery System (EHRS) on Vehicle Fuel Economy and Emissions under Cold Start New European Driving Cycle (NEDC) Energy Conversion and Management 197 111893 2019 https://doi.org/10.1016/j.enconman.2019.111893
  66. Ko , J. , Jin , D. , Jang , W. , Myung , C.L. et al. Comparative Investigation of NOx Emission Characteristics from a Euro 6-Compliant Diesel Passenger Car over the NEDC and WLTC at Various Ambient Temperatures Applied Energy 187 652 662 2017 https://doi.org/10.1016/j.apenergy.2016.11.105
  67. Puškár , M. , Jahnátek , A. , Kádárová , J. , Šoltésová , M. et al. Environmental Study Focused on the Suitability of Vehicle Certifications Using the New European Driving Cycle (NEDC) with Regard to the Affair ‘Dieselgate’ and the Risks of NO x Emissions in Urban Destinations Air Quality, Atmosphere and Health 12 2 251 257 2019 https://doi.org/10.1007/s11869-018-0646-5
  68. Bodisco , T. , and Zare , A. Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test Energies 12 2306 2019 https://doi.org/10.3390/en12122306
  69. Beatrice , C. , Di Blasio , G. , and Belgiorno , G. Experimental Analysis of Functional Requirements to Exceed the 100kW/l in High-Speed Light-Duty Diesel Engines Fuel 207 591 601 2017 https://doi.org/10.1016/j.fuel.2017.06.112
  70. Belgiorno , G. , Boscolo , A. , Dileo , G. , Numidi , F. et al. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency SAE Technical Paper 2020-37-0003 2020 https://doi.org/10.4271/2020-37-0003
  71. Di Blasio , G. , Beatrice , C. , Ianniello , R. , Pesce , F. et al. Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines SAE Technical Paper 2019-24-0111 2019 https://doi.org/10.4271/2019-24-0111
  72. Vassallo , A. , Beatrice , C. , Di Blasio , G. , Belgiorno , G. et al. The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine SAE Technical Paper 2018-37-0005 2018 https://doi.org/10.4271/2018-37-0005
  73. Myung , C.-L. , Lee , H. , Choi , K. , Lee , Y.J. et al. Effects of Gasoline, Diesel, LPG, and Low-Carbon Fuels and Various Certification Modes on Nanoparticle Emission Characteristics in Light-Duty Vehicles International Journal of Automotive Technology 10 537 544 2009 https://doi.org/10.1007/s12239-009-0062-9
  74. Karagöz , Y. Analysis of the Impact of Gasoline, Biogas and Biogas + Hydrogen Fuels on Emissions and Vehicle Performance in the WLTC and NEDC International Journal of Hydrogen Energy 44 59 31621 31632 2019 https://doi.org/10.1016/j.ijhydene.2019.10.019
  75. Myung , C.L. , Choi , K. , Kim , J. , Lim , Y. et al. Comparative Study of Regulated and unregulated toxic Emissions Characteristics from a Spark Ignition Direct Injection Light-Duty Vehicle Fueled with Gasoline and Liquid Phase LPG (Liquefied Petroleum Gas) Energy 44 1 189 196 2012 https://doi.org/10.1016/j.energy.2012.06.039
  76. Kim , K. , Kim , J. , Oh , S. , Kim , C. et al. Lower Particulate Matter Emissions with a Stoichiometric LPG Direct Injection Engine Fuel 187 197 210 Jan. 2017 https://doi.org/10.1016/j.fuel.2016.09.058
  77. Kim , J. , Choi , K. , Myung , C.-L. , and Park , S. Experimental Evaluation of Engine Control Strategy on the Time Resolved THC and Nano-Particle Emission Characteristics of Liquid Phase LPG Direct Injection (LPG-DI) Engine during the Cold Start Fuel Processing Technology 106 166 173 2013 https://doi.org/10.1016/j.fuproc.2012.07.020
  78. Gong , C. , Wei , F. , Si , X. , and Liu , F. Effects of Injection Timing of Methanol and LPG Proportion on Cold Start Characteristics of SI Methanol Engine with LPG Enriched Port Injection under Cycle-by-Cycle Control Energy 144 54 60 Feb. 2018 https://doi.org/10.1016/j.energy.2017.12.013
  79. Organ , B. et al. A Remote Sensing Emissions Monitoring Programme Reduces Emissions of Gasoline and LPG Vehicles Environmental Research 177 Oct. 2019 https://doi.org/10.1016/j.envres.2019.108614
  80. Yusri , I.M. , Abdul Majeed , A.P.P. , Mamat , R. , Ghazali , M.F. et al. A Review on the Application of Response Surface Method and Artificial Neural Network in Engine Performance and Exhaust Emissions Characteristics in Alternative Fuel Renewable and Sustainable Energy Reviews 90 665 686 2018 https://doi.org/10.1016/j.rser.2018.03.095
  81. Kamaruddin , M.H. , Osman , S.A. , Fawzi , M. , Mustaffa , N. et al. Predicting the Performances of a CAMPRO Engine Retrofitted with Liquefied Petroleum Gas (LPG) System Using 1-Dimensional Software MATEC Web of Conferences August 2-3, 2016 Cyberjaya, Malaysia 90 https://doi.org/10.1051/matecconf/20179001074
  82. Djermouni , M. , and Ouadha , A. Comparative Assessment of LNG and LPG in HCCI Engines Energy Procedia 139 254 259 2017 https://doi.org/10.1016/j.egypro.2017.11.205
  83. Duc , K.N. , and Duy , V.N. Study on Performance Enhancement and Emission Reduction of Used Fuel-Injected Motorcycles Using Bi-Fuel Gasoline-LPG Energy for Sustainable Development 43 60 67 Apr. 2018 https://doi.org/10.1016/j.esd.2017.12.005
  84. Nayak , V. , Rashmi , G.S. , Chitragar , P. , and Mohanan , P. Combustion Characteristics and Cyclic Variation of a LPG Fuelled MPFI Four Cylinder Gasoline Engine Energy Procedia 90 470 480 Dec. 2016 https://doi.org/10.1016/j.egypro.2016.11.214
  85. Tukiman , M.M. , Mustaffa , N. , Fawzi , M. , and Osman , S.A. Investigating the Influences of Liquid LPG Injection on Spark Ignition (SI) Engine MATEC Web Conferences 90 8 2017 https://doi.org/10.1051/matecconf/20179001075
  86. Hyundai Motor https://www.hyundai.pl/fileadmin/user_upload/LP_English_Price_List/Pricelist_i20_2017_EN.pdf 2020
  87. AC https://www.ac.com.pl/en 2020
  88. Maha https://www.maha.de/cps/rde/xbcr/SID-9BCBDCB3-F6DB59BF/maha_de/TD_MAHA_MSR_1000_VP230026_EN.pdf 2020
  89. Maha https://www.maha.de/cps/rde/xbcr/maha_de/TD_MAHA_MGT_5_VP135109_EN.pdf 2020
  90. Tutuianu , M. et al. 2014
  91. Duk , M. , Czarnigowski , J. , Jakliński , P. , Zyska , T. et al. Experiments on the Effect of Control Signal Duty Cycle on Pulse Gas Injector Closing Time Przeglad Elektrotechniczny 90 3 199 202 2014 https://doi.org/10.12915/pe.2014.03.45
  92. Lujan , J.M. , Guardiola , C. , Pla , B. , and Pandey , V. Impact of Driving Dynamics in RDE Test on NOx Emissions Dispersion Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234 6 1770 1778 2020 https://doi.org/10.1177/0954407019881581
  93. Merkisz , J. , Pielecha , J. , Bielaczyc , P. , and Woodburn , J. Analysis of Emission Factors in RDE Tests As Well As in NEDC and WLTC Chassis Dynamometer Tests SAE Technical Paper 2016-01-0980 2016 https://doi.org/10.4271/2016-01-0980

Cited By