This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling

Journal Article
03-13-05-0044
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 05, 2020 by SAE International in United States
Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling
Sector:
Citation: Nilsen, C., Yraguen, B., Mueller, C., Genzale, C. et al., "Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling," SAE Int. J. Engines 13(5):705-715, 2020, https://doi.org/10.4271/03-13-05-0044.
Language: English

Abstract:

Diesel engines are an important technology for transportation of both people and goods. However, historically they have suffered a significant downside of high soot and nitrogen oxides (NOx) emissions. Recently, ducted fuel injection (DFI) has been demonstrated to attenuate soot formation in compression-ignition engines and combustion vessels by 50% to 100%. This allows for diesel engines to be run at low-NOx emissions that would have otherwise produced significantly more soot due to the soot/NOx tradeoff. Currently the root causes of this soot attenuation are not well understood. To be able to better optimize DFI for use across a variety of engines and conditions, it is important to understand clearly how it works. This study expands on the current understanding of DFI by using numerical modeling under nonreacting conditions to provide insights about the roles of entrainment and mixing that would have been much more challenging to obtain experimentally. This study found that DFI enhances charge gas entrainment upstream of the duct and blocks entrainment inside of the duct. Mixing is enhanced by the duct, which results in lower peak equivalence ratios at the exit of the duct.