This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Choice of Spray Inputs on Simulations of Urea-Based Selective Catalytic Reduction Systems

Journal Article
03-13-05-0043
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 12, 2020 by SAE International in United States
Impact of Choice of Spray Inputs on Simulations of Urea-Based Selective Catalytic Reduction Systems
Sector:
Citation: Kalyankar, A., Blessinger, M., Munnannur, A., and Liu, Z., "Impact of Choice of Spray Inputs on Simulations of Urea-Based Selective Catalytic Reduction Systems," SAE Int. J. Engines 13(5):685-703, 2020, https://doi.org/10.4271/03-13-05-0043.
Language: English

References

  1. Zheng , M. , Reader , G.T. , and Hawley , J.G. Diesel Engine Exhaust Gas Recirculation—A Review on Advanced and Novel Concepts Energy Conversion Management 45 6 883 900 2004 https://doi.org/10.1016/S0196-8904(03)00194-8
  2. Musculus , M.P.B. , Miles , P.C. , and Pickett , L.M. Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion Progresss in Energy Combustion Science 39 2-3 246 283 2013 https://doi.org/10.1016/j.pecs.2012.09.001
  3. Khair , M.K. A Review of Diesel Particulate Filter Technologies SAE Technical Paper 2003-01-2303 2003 https://doi.org/10.4271/2003-01-2303
  4. Blakeman , P.G. , Chiffey , A.F. , Phillips , P.R. , Twigg , M.V. et al. Developments in Diesel Emission Aftertreatment Technology SAE Technical Paper 2003-01-3753 2003 https://doi.org/10.4271/2003-01-3753
  5. Johnson , T. , and Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Engines 11 6 1307 1330 2018 https://doi.org/10.4271/2018-01-0329
  6. Koebel , M. , Elsener , M. , and Kleemann , M. Urea-SCR: A Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines Catalysis Today 59 3-4 335 345 2000 https://doi.org/10.1016/S0920-5861(00)00299-6
  7. Yim , S.D. , Kim , S.J. , Baik , J.H. , Nam , I. et al. Decomposition of Urea into NH 3 for the SCR Process Industrial & Engineering Chemistry Research 43 16 4856 4863 2004 https://doi.org/10.1021/ie034052j
  8. Munnannur , A. , and Liu , Z.G. Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems SAE Technical Paper 2010-01-0889 2010 https://doi.org/10.4271/2010-01-0889
  9. Johansson , Å. , Wallin , U. , Karlsson , M. , Isaksson , A. et al. Investigation on Uniformity Indices Used for Diesel Exhaust Aftertreatment Systems SAE Technical Paper 2008-01-0613 2008 https://doi.org/10.4271/2008-01-0613
  10. McKinley , T.L. , Alleyne , A.G. , and Lee , C.-F. Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation SAE Int. J. Fuels Lubr. 3 1 486 499 2010 https://doi.org/10.4271/2010-01-0883
  11. Kalyankar , A. , Munnannur , A. , and Liu , Z.G. Predictive Modeling of Impact of ANR Non-Uniformity on Transient SCR System DeNOx Performance SAE Technical Paper 2015-01-1055 2015 https://doi.org/10.4271/2015-01-1055
  12. Strots , V.O. , Santhanam , S. , Adelman , B.J. , Griffin , G.A. et al. Deposit Formation in Urea-SCR Systems SAE Int. J. Fuels Lubr. 2 2 283 289 2009 https://doi.org/10.4271/2009-01-2780
  13. Munnannur , A. , Chiruta , M. , and Liu , Z.G. Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation SAE Technical Paper 2012-01-1287 2012 https://doi.org/10.4271/2012-01-1287
  14. Bachalo , W. Spray Diagnostics for the Twenty-First Century Atmospheric Sprays 10 3-5 439 474 2000 https://doi.org/10.1615/AtomizSpr.v10.i3-5.110
  15. Fansler , T.D. , and Parrish , S.E. Spray Measurement Technology: A Review Measuremnt Science and Technology 26 1 012002 2015 https://doi.org/10.1088/0957-0233/26/1/012002
  16. Klein-Douwel , R.J.H. , Frijters , P.J.M. , Somers , L.M.T. , de Boer , W.A. et al. Macroscopic Diesel Fuel Spray Shadowgraphy Using High Speed Digital Imaging in a High Pressure Cell Fuel 86 12-13 1994 2007 2007 https://doi.org/10.1016/j.fuel.2006.11.039
  17. Sedarsky , D. , Idlahcen , S. , Rozé , C. , and Blaisot , J.-B. Velocity Measurements in the Near Field of a Diesel Fuel Injector by Ultrafast Imagery Experimental Fluids 54 2 1451 2013 https://doi.org/10.1007/s00348-012-1451-9
  18. Nocivelli , L. , Montenegro , G. , Onorati , A. , Curto , F. et al. Quantitative Analysis of Low Pressure-Driven Spray Mass Distribution and Liquid Entrainment for SCR Application through a Mechanical Patternator SAE Technical Paper 2017-01-0965 2017 https://doi.org/10.4271/2017-01-0965
  19. Lim , J. , Sivathanu , Y. , Narayanan , V. , and Chang , S. Optical Patternation of a Water Spray Using Statistical Extinction Tomography Atmospheric Sprays 13 1 27 44 2003 https://doi.org/10.1615/AtomizSpr.v13.i1.20
  20. Lee Black , D. , McQuay , M.Q. , and Bonin , M.P. Laser-Based Techniques for Particle-Size Measurement: A Review of Sizing Methods and Their Industrial Applications Progress in Energy Combustion Science 22 3 267 306 1996 https://doi.org/10.1016/S0360-1285(96)00008-1
  21. Dodge , L.G. , Rhodes , D.J. , and Reitz , R.D. Drop-Size Measurement Techniques for Sprays: Comparison of Malvern Laser-Diffraction and Aerometrics Phase/Doppler Applied Optics 26 11 2144 1987 https://doi.org/10.1364/AO.26.002144
  22. Muliadi , A.R. , Sojka , P.E. , Sivathanu , Y.R. , and Lim , J. A Comparison of Phase Doppler Analyzer (Dual-PDA) and Optical Patternator Data for Twin-Fluid and Pressure-Swirl Atomizer Sprays Journal of Fluids Engineering 132 6 061402 2010 https://doi.org/10.1115/1.4000702
  23. Birkhold , F. , Meingast , U. , Wassermann , P. , and Deutschmann , O. Modeling and Simulation of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems Applied Catalysis B Environment 70 1-4 119 127 2007 https://doi.org/10.1016/j.apcatb.2005.12.035
  24. Mutyal , J. , Shrivastava , S. , Faltsi , R. , and Braun , M. Development and Validation of a Simulation Model for Urea-Water-Solution Decomposition for Automotive SCR Systems SAE Technical Paper 2015-01-2795 2015 htps://doi.org/10.4271/2015-01-2795
  25. Bai , C. , and Gosman , A.D. Development of Methodology for Spray Impingement Simulation SAE Technical Paper 950283 1995 https://doi.org/10.4271/950283950283
  26. Kuhnke , D. 2004
  27. Birkhold , F. , Meingast , U. , Wassermann , P. , and Deutschmann , O. Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction SAE Technical Paper 2006-01-0643 2006 https://doi.org/10.4271/2006-01-0643
  28. Smith , H. , Zöchbauer , M. , and Lauer , T. Advanced Spray Impingement Modelling for an Improved Prediction Accuracy of the Ammonia Homogenisation in SCR Systems SAE Technical Paper 2015-01-1054 2015 https://doi.org/10.4271/2015-01-1054
  29. Bebe , J.E. , and Andersen , K.S. Validation of a CFD Spray Model Based on Spray Nozzle Characteristics SAE Technical Paper 2017-01-0822 2017 https://doi.org/10.4271/2017-01-0822
  30. Varna , A. , Spiteri , A.C. , Wright , Y.M. , Dimopoulos Eggenschwiler , P. et al. Experimental and Numerical Assessment of Impingement and Mixing of Urea-Water Sprays for Nitric Oxide Reduction in Diesel Exhaust Applied Energy 157 824 837 2015 https://doi.org/10.1016/j.apenergy.2015.03.015
  31. Heide , J. , Karlsson , M. , and Altimira , M. Numerical Analysis of Urea-SCR Sprays under Cross-Flow Conditions SAE Technical Paper 2017-01-0964 2017 https://doi.org/10.4271/2017-01-0964
  32. Nishad , K. , Ries , F. , Janicka , J. , and Sadiki , A. Analysis of Spray Dynamics of Urea-Water-Solution Jets in a SCR-DeNOx System: An LES Based Study International Journal of Heat Fluid Flow 70 247 258 2018 https://doi.org/10.1016/j.ijheatfluidflow.2018.02.017
  33. Ström , H. , Lundström , A. , and Andersson , B. Choice of Urea-Spray Models in CFD Simulations of Urea-SCR Systems Chemical Engineering Journal. 150 1 69 82 2009 https://doi.org/10.1016/j.cej.2008.12.003
  34. Fischer , S. , Bitto , R. , Lauer , T. , Krenn , C. et al. Impact of the Turbulence Model and Numerical Approach on the Prediction of the Ammonia Homogenization in an Automotive SCR System SAE Int. J. Engines 5 3 1443 1458 2012 https://doi.org/10.4271/2012-01-1291
  35. Rogóż , R. , Kapusta , Ł.J. , Bachanek , J. , Vankan , J. et al. Improved Urea-Water Solution Spray Model for Simulations of Selective Catalytic Reduction Systems Renewable Sustainable Energy Reviews 120 109616 2020 https://doi.org/10.1016/j.rser.2019.109616
  36. Spiteri , A. , and Dimopoulos Eggenschwiler , P. Experimental Fluid Dynamic Investigation of Urea-Water Sprays for Diesel Selective Catalytic Reduction-DeNOx Applications Industrial and Engineering Chemical Research 53 8 3047 3055 2014 https://doi.org/10.1021/ie404037h
  37. Nocivelli , L. , Montenegro , G. , and Dimopoulos Eggenschwiler , P. Low Pressure-Driven Injection Characterization for SCR Applications SAE Technical Paper 2019-01-0994 2019 https://doi.org/10.4271/2019-01-0994
  38. 2007
  39. Ghandhi , J.B. , and Heim , D.M. An Optimized Optical System for Backlit Imaging Review Science Instruments. 80 5 056105 2009 https://doi.org/10.1063/1.3128728
  40. SAE Standards “ 2007 https://doi.org/10.4271/J2715_200703
  41. Bade , K. , Cronce , K. , and Schick , R. Development of Low-Order Regression Models for Selected Flat Spray Characteristics International Conference on Liquid Atomization and Spray Systems Heidelberg, Germany 2012
  42. Tropea , C. , Xu , T.-H. , Onofri , F. , Géhan , G. et al. Dual-Mode Phase-Doppler Anemometer Particle and Particle System Characterization 13 2 165 170 1996 https://doi.org/10.1002/ppsc.19960130216
  43. Schwarzkopf , J. , Shakal , J. , and Bonuccelli , C. A New Method for Minimizing Volumetric Flux Errors Associated with PDPA Measurements in the Dilute Region of Full Cone Pressure Swirl Atomizers International Conference on Liquid Atomization and Spray Systems Kyoto, Japan 2006
  44. Fandrey , C. , Naqwi , A. , Shakal , J. , and Zhang , H. A Phase Doppler System for High Concentration Sprays International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal 2000
  45. Bade , K.M. , and Schick , R.J. Phase Doppler Interferometry Volume Flux Sensitivity to Parametric Settings and Droplet Trajectory Atmospheric Sprays 21 7 537 551 2011 https://doi.org/10.1615/AtomizSpr.2012001407
  46. 2015 https://doi.org/10.31030/2313048%0A
  47. O’Rourke , P.J. , and Amsden , A.A. The Tab Method for Numerical Calculation of Spray Droplet Breakup SAE Technical Paper 872089 1987 https://doi.org/10.4271/872089
  48. Munnannur , A. , and Reitz , R.D. Comprehensive Collision Model for Multidimensional Engine Spray Computations Atmospheric Sprays 19 7 597 619 2009 https://doi.org/10.1615/AtomizSpr.v19.i7.10
  49. Mitchell , D. , Chiruta , M. , Henry , L. , and Alonzo , J. 2018
  50. 2017
  51. Abramzon , B. , and Sirignano , W.A. Droplet Vaporization Model for Spray Combustion Calculations International Journal of Heat and Mass Transfer 32 9 1605 1618 1989 https://doi.org/10.1016/0017-9310(89)90043-4
  52. Brenn , G. , Deviprasath , L. , and Durst , F. Computations and Experiments on the Evaporation of Multi-Component Droplets International Conference on Liquid Atomization and Spray Systems Sorrento, Italy 2003
  53. Birkhold , F. 2007
  54. Schadel , S.A. , and Hanratty , T.J. Interpretation of Atomization Rates of the Liquid Film in Gas-Liquid Annular Flow International Journal of Multiphase Flow 15 6 893 900 1989 https://doi.org/10.1016/0301-9322(89)90018-9
  55. Kataoka , I. , Ishii , M. , and Mishima , K. Generation and Size Distribution of Droplet in Annular Two-Phase Flow Journal of Fluids Engineering 105 2 230 238 1983 https://doi.org/10.1115/1.3240969

Cited By