This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry

Journal Article
03-13-04-0032
ISSN: 1946-3936, e-ISSN: 1946-3944
Published July 08, 2020 by SAE International in United States
Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry
Sector:
Citation: Falkenstein, T., Davidovic, M., Chu, H., Bode, M. et al., "Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry," SAE Int. J. Engines 13(4):487-502, 2020, https://doi.org/10.4271/03-13-04-0032.
Language: English

References

  1. Aleiferis , P. , Taylor , A. , Ishii , K. , and Urata , Y. The Nature of Early Flame Development in a Lean-Burn Stratified-Charge Spark-Ignition Engine Combustion and Flame 136 3 283 302 2004
  2. Peterson , B. , Reuss , D.L. , and Sick , V. High-Speed Imaging Analysis of Misfires in a Spray-Guided Direct Injection Engine Proceedings of the Combustion Institute 33 2 3089 3096 2011
  3. Wang , Z. , Liu , H. , and Reitz , R.D. Knocking Combustion in Spark-Ignition Engines Progress in Energy and Combustion Science 61 78 112 2017
  4. Schiffmann , P. , Reuss , D.L. , and Sick , V. Empirical Investigation of Spark-Ignited Flame-Initiation Cycle-to-Cycle Variability in a Homogeneous Charge Reciprocating Engine International Journal of Engine Research 19 5 491 508 2018
  5. Zeng , W. , Keum , S. , Kuo , T.-W. , and Sick , V. Role of Large Scale Flow Features on Cycle-to-Cycle Variations of Spark-Ignited Flame-Initiation and Its Transition to Turbulent Combustion Proceedings of the Combustion Institute 37 4 4945 4956 2018
  6. Masouleh , M.G. , Keskinen , K. , Kaario , O. , Kahila , H. et al. Modeling Cycle-to-Cycle Variations in Spark Ignited Combustion Engines by Scale-Resolving Simulations for Different Engine Speeds Applied Energy 250 801 820 2019
  7. Zhao , L. , Moiz , A.A. , Som , S. , Fogla , N. et al. Examining the Role of Flame Topologies and In-cylinder Flow Fields on Cyclic Variability in Spark-Ignited Engines Using Large-Eddy Simulation International Journal of Engine Research 19 8 886 904 2018
  8. Chen , C. , Ameen , M.M. , Wei , H. , Iyer , C. et al. LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine SAE Technical Paper 2019-01-0006 2019 https://doi.org/10.4271/2019-01-0006
  9. Robert , A. , Truffin , K. , Iafrate , N. , Jay , S. et al. Large-Eddy Simulation Analysis of Knock in a Direct Injection Spark Ignition Engine International Journal of Engine Research 20 7 765 776 2019
  10. Rutland , C.J. Large-Eddy Simulations for Internal Combustion Engines - A Review International Journal of Engine Research 12 5 421 451 2011
  11. Hasse , C. Scale-Resolving Simulations in Engine Combustion Process Design Based on a Systematic Approach for Model Development International Journal of Engine Research 17 1 44 62 2016
  12. Böhm , B. and Peterson , B. https://www.rsm.tu-darmstadt.de/home_rsm/events_3/darmstadt_engine_workshop/index.en.jsp
  13. Sick , V. https://volker-sick.engin.umich.edu/home/downloads
  14. Baum , E. , Peterson , B. , Böhm , B. , and Dreizler , A. On the Validation of LES Applied to Internal Combustion Engine Flows: Part 1: Comprehensive Experimental Database Flow, Turbulence and Combustion 92 1 269 297 2014
  15. Baum , E. , Peterson , B. , Surmann , C. , Michaelis , D. et al. Investigation of the 3d Flow Field in an IC Engine Using Tomographic PIV Proceedings of the Combustion Institute 34 2 2903 2910 2013
  16. Peterson , B. , Baum , E. , Bhm , B. , Sick , V. et al. High-Speed PIV and LIF Imaging of Temperature Stratification in an Internal Combustion Engine Proceedings of the Combustion Institute 34 2 3653 3660 2013
  17. Peterson , B. , Baum , E. , Bhm , B. , Sick , V. et al. Spray-Induced Temperature Stratification Dynamics in a Gasoline Direct-Injection Engine Proceedings of the Combustion Institute 35 3 2923 2931 2015
  18. He , C. , Kuenne , G. , Yildar , E. , van Oijen , J. et al. Evaluation of the Flame Propagation within an SI Engine Using Flame Imaging and LES Combustion Theory and Modelling 21 6 1080 1113 2017
  19. Peterson , B. , Baum , E. , Bhm , B. , and Dreizler , A. Early Flame Propagation in a Spark-Ignition Engine Measured with Quasi 4d-Diagnostics Proceedings of the Combustion Institute 35 3 3829 3837 2015
  20. Peterson , B. , Baum , E. , Dreizler , A. , and Bhm , B. An Experimental Study of the Detailed Flame Transport in a SI Engine Using Simultaneous Dual-Plane OH-LIF and Stereoscopic PIV Combustion and Flame 202 16 32 2019
  21. Hill , H. , Ding , C.-P. , Baum , E. , Bhm , B. et al. An Application of Tomographic PIV to Investigate the Spray-Induced Turbulence in a Direct-Injection Engine International Journal of Multiphase Flow 121 103116 2019
  22. Thobois , L. , Rymer , G. , Soulres , T. , and Poinsot , T. Large-Eddy Simulation in IC Engine Geometries SAE Technical Paper 2004-01-1854 2004 https://doi.org/10.4271/2004-01-1854
  23. Catellani , C. , Bianchi , G.M. , Falfari , S. , Cazzoli , G. et al. Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case SAE Int. J. Engines 9 1 657 673 2016 https://doi.org/10.4271/2016-01-9041
  24. Krastev , V.K. and Bella , G. A Zonal Turbulence Modeling Approach for ICE Flow Simulation SAE Int. J. Engines 9 3 1425 1436 2016 https://doi.org/10.4271/2016-01-0584
  25. Scholz , P. , Franois , D.G. , Haubold , S. , Sun , S. et al. WM-LES-Simulation of a Generic Intake Port Geometry SAE Int. J. Engines 11 3 331 348 2018 https://doi.org/10.4271/03-11-03-0023
  26. Dellenback , P.A. , Metzger , D.E. , and Neitzel , G.P. Measurements in Turbulent Swirling Flow through an Abrupt Axisymmetric Expansion AIAA Journal 26 6 669 681 1988
  27. Freudenhammer , D. , Baum , E. , Peterson , B. , Böhm , B. et al. Volumetric Intake Flow Measurements of an IC Engine Using Magnetic Resonance Velocimetry Experiments in Fluids 55 5 1724 May 2014
  28. Freudenhammer , D. , Peterson , B. , Ding , C.-P. , Boehm , B. et al. The Influence of Cylinder Head Geometry Variations on the Volumetric Intake Flow Captured by Magnetic Resonance Velocimetry SAE Int. J. Engines 8 4 1826 1836 2015 https://doi.org/10.4271/2015-01-1697
  29. Ianiro , A. , Lynch , K.P. , Violato , D. , Cardone , G. et al. Three-Dimensional Organization and Dynamics of Vortices in Multichannel Swirling Jets Journal of Fluid Mechanics 843 180210 2018
  30. Falkenstein , T. , Bode , M. , Kang , S. , Pitsch , H. et al. Large-Eddy Simulation Study on Unsteady Effects in a Statistically Stationary SI Engine Port Flow SAE Technical Paper 2015-01-0373 2015 https://doi.org/10.4271/2015-01-0373
  31. Falkenstein , T. , Kang , S. , Davidovic , M. , Bode , M. et al. LES of internal combustion engine flows using cartesian overset grids Oil & Gas Science and Technology 72 6 36 2017
  32. Kang , S. , Bode , M. , Falkenstein , T. , and Pitsch , H. 2015 http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/CIAO/_node.html
  33. Desjardins , O. , Blanquart , G. , Balarac , G. , and Pitsch , H. High Order Conservative Finite Difference Scheme for Variable Density Low Mach Number Turbulent Flows Journal of Computational Physics 227 15 7125 7159 2008
  34. Mittal , V. , Kang , S. , Doran , E. , Cook , D. et al. LES of Gas Exchange in IC Engines Oil & Gas Science and Technology 69 1 29 40 2014
  35. Kang , S. , Iaccarino , G. , Ham , F. , and Moin , P. Prediction of Wall-Pressure Fluctuation in Turbulent Flows with an Immersed Boundary Method Journal of Computational Physics 228 18 6753 6772 2009
  36. Lee , J. , Cho , M. , and Choi , H. Large Eddy Simulations of Turbulent Channel and Boundary Layer Flows at High Reynolds Number with Mean Wall Shear Stress Boundary Condition Physics of Fluids 25 11 110808 2013
  37. Roman , F. , Armenio , V. , and Fröhlich , J. A Simple Wall-Layer Model for Large Eddy Simulation with Immersed Boundary Method Physics of Fluids 21 10 101701 2009
  38. Yang , X.I.A. , Sadique , J. , Mittal , R. , and Meneveau , C. Integral Wall Model for Large Eddy Simulations of Wall-Bounded Turbulent Flows Physics of Fluids 27 2 025112 2015
  39. Lodato , G. , Domingo , P. , and Vervisch , L. Three-Dimensional Boundary Conditions for Direct and Large-Eddy Simulation of Compressible Viscous Flows Journal of Computational Physics 227 10 5105 5143 2008
  40. Meneveau , C. , Lund , T.S. , and Cabot , W.H. A Lagrangian Dynamic Subgrid-Scale Model of Turbulence Journal of Fluid Mechanics 319 353 385 1996
  41. Silvis , M.H. , Remmerswaal , R.A. , and Verstappen , R. Physical Consistency of Subgrid-Scale Models for Large-Eddy Simulation of Incompressible Turbulent Flows Physics of Fluids 29 1 015105 2017
  42. Balarac , G. , Pitsch , H. , and Raman , V. Development of a Dynamic Model for the Subfilter Scalar Variance Using the Concept of Optimal Estimators Physics of Fluids 20 3 035114 2008
  43. Liu , X.-D. , Osher , S. , and Chan , T. Weighted Essentially Non-Oscillatory Schemes Journal of Computational Physics 115 1 200 212 1994
  44. Trisjono , P. , Kang , S. , and Pitsch , H. On a Consistent High-order Finite Difference Scheme with Kinetic Energy Conservation for Simulating Turbulent Reacting Flows Journal of Computational Physics 327 612 628 2016
  45. Hu , F. , Hussaini , M. , and Manthey , J. Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics Journal of Computational Physics 124 1 177 191 1996
  46. Pitsch , H. Large-Eddy Simulation of Turbulent Combustion Annual Review of Fluid Mechanics 38 1 453 482 2006
  47. Lumley , J.L. The Structure of Inhomogeneous Turbulent Flows Yaglom , A.M. , Tatarski , V.I. Atmospheric Turbulence and Radio Propagation Moscow Nauka 1967 166 178
  48. Rolon , J.C. , Veynante , D. , Martin , J.P. , and Durst , F. Counter Jet Stagnation Flows Experiments in Fluids 11 5 313 324 1991
  49. Stan , G. and Johnson , D.A. Experimental and Numerical Analysis of Turbulent Opposed Impinging Jets AIAA Journal 39 10 1901 1908 2001
  50. Ciani , A. , Kreutner , W. , Frouzakis , C. , Lust , K. et al. An Experimental and Numerical Study of the Structure and Stability of Laminar Opposed-Jet Flows Computers & Fluids 39 1 114 124 2010
  51. Coppola , G. and Gomez , A. Experimental Study of Highly Turbulent Isothermal Opposed-Jet Flows Physics of Fluids 22 10 105101 2010
  52. Shapira , M. , Degani , D. , and Weihs , D. Stability and Existence of Multiple Solutions for Viscous Flow in Suddenly Enlarged Channels Computers & Fluids 18 3 239 258 1990
  53. Mizushima , J. and Shiotani , Y. Structural Instability of the Bifurcation Diagram for Two-Dimensional Flow in A Channel with a Sudden Expansion Journal of Fluid Mechanics 420 131 145 2000
  54. Revuelta , A. On the Two-Dimensional Flow in a Sudden Expansion with Large Expansion Ratios Physics of Fluids 17 2 028102 2005
  55. Nicollet , F. , Krüger , C. , Schorr , J. , Nicoud , E. et al. A PIV-Guided Large-Eddy Simulation of In-Cylinder Flows Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 72 5 28 2017
  56. Theile , M. , Reiig , M. , Hassel , E. , Thvenin , D. et al. Numerical Analysis of the Influence of Early Fuel Injection on Charge Motion in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations International Journal of Engine Research 21 4 664 682
  57. Rosales , C. and Meneveau , C. Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementations and Convergence Properties Physics of Fluids 17 9 095106 2005
  58. Jiang , G.-S. and Shu , C.-W. Efficient Implementation of Weighted ENO Schemes Journal of Computational Physics 126 1 202 228 1996
  59. Brusiani , F. , Bianchi , G.M. , Baritaud , T. , and d’Espinosa , A.B. Using LES for Predicting High Performance Car Airbox Flow SAE Int. J. Passeng. Cars - Mechan. Syst. 2 1 1050 1064 2009
  60. Pope , S.B. Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows New Journal of Physics 6 35 35 Mar. 2004
  61. Falkenstein , T. , Davidovic , M. , Attili , A. , Bode , M. et al. LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine SAE Technical Paper 2020-01-0242 2020 https://doi.org/10.4271/2020-01-0242

Cited By