This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Modular Internal Combustion Engine Blow Rig and Cold-Flow Analysis Concept for Industrial Particle Image Velocimetry Measurements under Steady, Near-Reality Charge Air Conditions

Journal Article
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 19, 2020 by SAE International in United States
A Modular Internal Combustion Engine Blow Rig and Cold-Flow Analysis Concept for Industrial Particle Image Velocimetry Measurements under Steady, Near-Reality Charge Air Conditions
Citation: Lichtmes, M., Freitag, M., Frenzel, M., and Harder, P., "A Modular Internal Combustion Engine Blow Rig and Cold-Flow Analysis Concept for Industrial Particle Image Velocimetry Measurements under Steady, Near-Reality Charge Air Conditions," SAE Int. J. Engines 13(3):2020,
Language: English


  1. U.S. Department of Transportation, Bureau of Transportation Statistics , “Transportation Statistics Annual Report 2018,” Washington, DC, 2018.
  2. Falkenberg, H., Klotz, E.-M., Koepp, M., Thamling, N. et al. , Evaluierung der Kraft-Wärme-Kopplung - Analysen zur Entwicklung der Kraft-Warme-Kopplung in einem Energiesystemmit hohem Anteil erneuerbarer Energien (Germany: Bundesministerium für Wirtschaft und Energie, 2019).
  3. MTU Onsite Energy , “MTU Onsite Energy - Gas Generator Sets,”, accessed January 2020.
  4. IΝΝΙΟ Jenbacher GmbH & Co OG , “INNIO - Cogeneration,”, accessed January 2020.
  5. Dumont, M., Luning, L., Yildiz, I., and Koop, K. , “Methane Emissions in Biogas Production,” in Wellinger, A., Murphy, J., and Baxter, D. , editors. The Biogas Handbook. (Philadelphia, PA: Woodhead Publishing Limited, 2013), 248-266.
  6. Kristensen, P.G., Jensen, J.K., Nielsen, M., and Boll Illerup, I. , “Emission Factors from Gas Fired CHP Units,” Danish Gas Technology Centre and National Environmental Research Institute Denmark, undated.
  7. de Zwart, M., van Dijk, G. , and Klimstra, J. , “Methane Emissions from Gas Engines Driving Combined Heat and Power,” Jounral of Integrative Environmental Sciences 9:113-125, 2012.
  8. Freitag, M., Frenzel, M., Harder, P., and Lichtmes, M. , “PIV- und CFD-Untersuchungen als Methoden zur Brennverfahrensentwicklung von BHKW-Gasmotoren,” Schriftenreihe der Fakultät Technik der Dualen Hochschule Baden-Württemberg Ravensburg, February 2017.
  9. Heywood, J.B. , Internal Combustion Engine Fundamentals (New York, NY: McGraw-Hill Inc, 1988).
  10. Raffel, M., Willert, C., Wereley, S., and Kompenhans, J. , Particle Image Velocimetry - A Practical Guide, Second Edition (Berlin, Heidelberg: Springer-Verlag, 2007), 448.
  11. Tropea, C., Yarin, A., and Foss, J. , Springer Handbook of Experimental Fluid Mechanics (Berlin Heidelberg: Springer-Verlag, 2007).
  12. Reuss, D., Kuo, T.-W., Khalighi, B., Haworth, D., and Rosalik, M. , “Particle Image Velocimetry Measurements in a High-Swirl Engine Used for Evaluation of Computational Fluid Dynamics Calculations,” SAE Technical Paper 952381, 1995,
  13. Zeng, W., Sjöberg, M., and Reuss, D. , “Using PIV Measurements to Determine the Role of the In-Cylinder Flow Field for Stratified DISI Engine Combustion,” SAE Int. J. Engines 7(2):615-632, 2014,
  14. Zha, K., Busch, S., Miles, P., Wijeyakulasuriya, S. et al. , “Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry,” SAE Int. J. Engines 8(4):1837-1855, 2015,
  15. Bevan, K. and Ghandhi, J. , “PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results,” SAE Technical Paper 2004-32-0005, 2004,
  16. Dierksheide, U., Meyer, P., Hovestadt, T., and Hentschel, W. , “Endoscopic 2D Particle Image Velocimetry (PIV) Flow Field Measurements in IC Engines,” Experiments in Fluids 33:794-800, 2002.
  17. da Costa, R., Braga, R., Junior, C., Valle, R., and Huebner, R. , “PIV Measurements and Numerical Analysis of In-Cylinder Tumble Flow in a Motored Engine,” Journal of the Brazilian Society of Mechanical Sciences and Engineering 39(10):931-3945, 2017.
  18. Ishima, T., Obokata, T., Nomura, T., and Takahashi, Y. , “Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Conditions,” SAE Technical Paper 2008-01-1063, 2008,
  19. Binjuwair, S., Ibrahim, S., Wigley, G., and Pitcher, G. , “In-Cylinder Flow Structure Analysis by Particle Image Velocimetry under Steady State Condition,” SAE Technical Paper 2012-01-1975, 2012,
  20. Vucinic, D., Hazarika, B., and Dinescu, C. , “Visualization and PIV Measurements of In-Cylinder Axisymmetric Flows,” SAE Technical Paper 2001-01-3273, 2001,
  21. Scholz, P., Reuter, I., and Heitmann, D. , “PIV Measurements of the Flow through an Intake Port Using Refractive Index Matching,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2012.
  22. LaVision GmbH , “FlowMaster - Advanced PIV/PTV Systems for Quantitative Flow Field Analysis,”, accessed September 2018.
  23. Litron Lasers Ltd , “Litron Lasers Website,”, accessed February 2019.
  24. LaVision GmbH , “Product Manual - Aerosol Generator,” 2016.
  25. GÜNTHER SCHAIDT SAFEX®-CHEMIE GMBH , “Safex Website,”, accessed February 2019.
  26. Melling, A. , “Tracer Particles and Seeding for Particle Image Velocimetry,” Measurement Science and Technology 8(12):1406-1416, 1997.
  27. LaVision GmbH , “Product-Manual - FlowMaster,” 2016.
  28. Prasad, A. , “Stereoscopic Particle Image Velocimetry,” In: Experiments in Fluids, Vol. 29 (Switzerland: Springer Nature, 2000), 103-116.
  29. Liu, Z., Jiao, J., and Zheng, Y. , “Study of Axial Velocity in Gas Cyclones by 2D-PIV, 3D-PIV, and Simulation,” China Particuology 4(3-4):204-210, 2006.
  30. Pope, S.B. , Turbulent Flows (Cambridge, UK: Cambridge University Press, 2012).
  31. ESI Group , “Scilab Website,”, accessed June 2018.
  32. Kitware, Inc., “File Formats for VTK version 4.2,”, accessed January 2020.
  33. OpenCFD Ltd (ESI Group) , “OpenFOAM® User Guide,”, accessed January 2019.
  34. Holmén, V. , Methods for Vortex Identification (Sweden: Lund University, Centre for Mathematical Sciences, 2012).
  35. Haller, G. , “An Objective Definition of a Vortex,” Journal of Fluid Mechanics 525:1-26, 2005.
  36. Wienecke, B. , “PIV Uncertainty Quantification from Correlation Statistics,” Measurement Science and Technology 25, 2015,
  37. Settles, G. , Schlieren and Shadowgraph Techniques: Visualising Phenomena in Transparent Media (New York: Springer Verlag Berlin Heidelberg, 2001).
  38. Kinsey, J. , “Laser-Induced Fluorescence,” Annual Review of Physical Chemistry 28(1):349-372, 1977.
  39. Kim, D., Park, S., and Bae, C. , “Schlieren, Shadowgraph, Mie-Scattering Visualization of Diesel and Gasoline Sprays in High Pressure/High Temperature Chamber under GDCI Engine Low Load Condition,” International Journal of Automotive Technology 19(1):1-8, 2018.
  40. Kitware Inc., “ParaView Website,” Kitware Inc.,, accessed June 2019.

Cited By