This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Time-Saving Methodology for Optimizing a Compression Ignition Engine to Reduce Fuel Consumption through Machine Learning

Journal Article
03-13-02-0019
ISSN: 1946-3936, e-ISSN: 1946-3944
Published February 07, 2020 by SAE International in United States
A Time-Saving Methodology for Optimizing a Compression Ignition Engine to Reduce Fuel Consumption through Machine Learning
Sector:
Citation: Rahnama, P., Arab, M., and Reitz, R., "A Time-Saving Methodology for Optimizing a Compression Ignition Engine to Reduce Fuel Consumption through Machine Learning," SAE Int. J. Engines 13(2):267-288, 2020, https://doi.org/10.4271/03-13-02-0019.
Language: English

References

  1. Navid , A. , Khalilarya , S. , and Abbasi , M. Diesel Engine Optimization with Multi-Objective Performance Characteristics by Non-Evolutionary Nelder-Mead Algorithm: Sobol Sequence and Latin Hypercube Sampling Methods Comparison in DoE Process Fuel 228 349 367 2018
  2. Shi , Y. , Ge , H.-W. , and Reitz , R.D. Computational Optimization of Internal Combustion Engines London Springer-Verlag 2011
  3. Paykani , A. , Kakaee , A.H. , Rahnama , P. , and Reitz , R.D. Effects of Diesel Injection Strategy on Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion Energy 90 814 826 2015
  4. Gil , A. , Pastor , J.V. , Garcia , A. , and Pachano , L. Combined CFD - PIV Methodology for the Characterization of Air Flow in a Diesel Engine SAE Technical Paper 2018-01-1769 2018 https://doi.org/10.4271/2018-01-1769
  5. Kozarac , D. , Taritas , I. , Sjeric , M. , Krajnovic , J. , and Sremec , M. The Optimization of the Dual Fuel Engine Injection Parameters by Using a Newly Developed Quasi-Dimensional Cycle Simulation Combustion Model SAE Technical Paper 2018-01-0261 2018 https://doi.org/10.4271/2018-01-0261
  6. Mrzljak , V. , Medica , V. , and Bukovac , O. Volume Agglomeration Process in Quasi-Dimensional Direct Injection Diesel Engine Numerical Model Energy 115 658 667 2016
  7. Pandal , A. , Payri , R. , García-Oliver , J.M. , and Pastor , J.M. Optimization of Spray Break-Up CFD Simulations by Combining Σ-Y Eulerian Atomization Model with a Response Surface Methodology under Diesel Engine-Like Conditions (ECN Spray a) Computers and Fluids 156 9 20 2017
  8. Jurić , F. , Petranović , Z. , Vujanović , M. , Katrašnik , T. et al. Experimental and Numerical Investigation of Injection Timing and Rail Pressure Impact on Combustion Characteristics of a Diesel Engine Energy Conversion and Management 185 730 739 2019
  9. Pei , Y. , Zhang , Y. , Kumar , P. , Traver , M. et al. CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel SAE Int. J. Commer. Veh. 10 2 532 546 2017 https://doi.org/10.4271/2017-01-0550
  10. Benajes , J. , Novella , R. , Pastor , J.M. , Hernández-López , A. et al. Optimization of the Combustion System of a Medium Duty Direct Injection Diesel Engine by Combining CFD Modeling with Experimental Validation Energy Conversion and Management 110 212 229 2016
  11. Ganji , P.R. , Chintala , K.P. , Raju , V.K. , and Surapaneni , S.R. Parametric Study and Optimization Using RSM of DI Diesel Engine for Lower Emissions Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 671 680 2017
  12. Benajes , J. , Novella , R. , Pastor , J.M. , Hernández-López , A. , and Kokjohn , S.L. Computational Optimization of the Combustion System of a Heavy Duty Direct Injection Diesel Engine Operating with Dimethyl-Ether Fuel 218 127 139 2018
  13. Lee , S. , Jeon , J. , and Park , S. Optimization of Combustion Chamber Geometry and Operating Conditions for Compression Ignition Engine Fueled with Pre-Blended Gasoline-Diesel Fuel Energy Conversion and Management 126 638 648 2016
  14. Probst , D.M. , Senecal , P.K. , Qian , P.Z. , Xu , M.X. , and Leyde , B.P. Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD ASME 2016 Internal Combustion Engine Division Fall Technical Conference 2016 2016 V001T006A009 V001T006A009
  15. Wu , Z. , Rutland , C.J. , and Han , Z. Numerical Optimization of Natural Gas and Diesel Dual-Fuel Combustion for a Heavy-Duty Engine Operated at a Medium Load International Journal of Engine Research 19 682 696 2018
  16. Donateo , T. , Carlucci , A.P. , Strafella , L. , and Laforgia , D. Experimental Validation of a CFD Model and an Optimization Procedure for Dual Fuel Engines SAE Technical Paper 2014-01-1314 2014 https://doi.org/10.4271/2014-01-1314
  17. Chen , Y. and Lv , L. The Multi-Objective Optimization of Combustion Chamber of DI Diesel Engine by NLPQL Algorithm Applied Thermal Engineering 73 1332 1339 2014
  18. Navid , A. , Khalilarya , S. , and Taghavifar , H. Comparing Multi-Objective Non-Evolutionary NLPQL and Evolutionary Genetic Algorithm Optimization of a DI Diesel Engine: DoE Estimation and Creating Surrogate Model Energy Conversion and Management 126 385 399 2016
  19. Uslu , S. and Celik , M.B. Prediction of Engine Emissions and Performance with Artificial Neural Networks in a Single Cylinder Diesel Engine Using Diethyl Ether Engineering Science and Technology, an International Journal 21 1194 1201 2018
  20. Sharma , A. , Sharma , H. , Sahoo , P. , Tripathi , R. , and Meher , L. ANN Based Modeling of Performance and Emission Characteristics of Diesel Engine Fuelled with Polanga Biodiesel at Different Injection Pressures International Energy Journal 15 57 72 2016
  21. Muralidharan , K. and Vasudevan , D. Applications of Artificial Neural Networks in Prediction of Performance, Emission and Combustion Characteristics of Variable Compression Ratio Engine Fuelled with Waste Cooking Oil Biodiesel Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 915 928 2015
  22. Gürgen , S. , Ünver , B. , and Altın , İ. Prediction of Cyclic Variability in a Diesel Engine Fueled with N-Butanol and Diesel Fuel Blends Using Artificial Neural Network Renewable Energy 117 538 544 2018
  23. Richards , K. , Senecal , P. , and Pomraning , E. CONVERGE (v2. 2.0) Manual Madison, WI Convergent Science, Inc. 2014
  24. Dukowicz , J.K. A Particle-Fluid Numerical Model for Liquid Sprays Journal of Computational Physics 35 229 253 1980
  25. Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and Sprays 9 623 650 1999
  26. Schmidt , D.P. and Rutland , C. A New Droplet Collision Algorithm Journal of Computational Physics 164 62 80 2000
  27. Liu , A.B. , Mather , D. , Reitz , R.D. 1993
  28. Ra , Y. and Reitz , R.D. A Vaporization Model for Discrete Multi-Component Fuel Sprays International Journal of Multiphase Flow 35 101 117 2009
  29. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 267 295 1995
  30. Amsden , A.A. , O’Rourke , P.J. , and Butler , T.D. 1989
  31. Senecal , P.K. , Richards , K.J. , Pomraning , E. , Yang , T. et al. A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations SAE Technical Paper 2007-01-0159 2007 https://doi.org/10.4271/2007-01-0159
  32. Raju , M. , Wang , M. , Dai , M. , Piggott , W. , and Flowers , D. Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations SAE Technical Paper 2012-01-0135 2012 https://doi.org/10.4271/2012-01-0135
  33. Richards , K. , Senecal , P.K. , and Pomraning , E. CONVERGE 2.4 Manual Madison, WI Convergent Science 2017
  34. Senecal , P. , Pomraning , E. , Richards , K. , Briggs , T. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 https://doi.org/10.4271/2003-01-1043
  35. Namazian , M. and Heywood , J.B. Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power SAE Technical Paper 820088 1982 https://doi.org/10.4271/820088
  36. Fridriksson , H. , Sundén , B. , Hajireza , S. , and Tuner , M. CFD Investigation of Heat Transfer in a Diesel Engine with Diesel and PPC Combustion Modes SAE Technical Paper 2011-01-1838 2011 https://doi.org/10.4271/2011-01-1838
  37. Tanin , K. , Wickman , D. , Montgomery , D. , Das , S. , and Reitz , R.D. The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder DI Diesel Engine SAE Technical Paper 1999-01-0840 1999 https://doi.org/10.4271/1999-01-0840
  38. Montgomery , D.T. 2000
  39. Senecal , P.K. 2000
  40. Senecal , P. , Pomraning , E. , Richards , K. , and Som , S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations Journal of Energy Resources Technology 136 012204 2014
  41. Mitchell , T.M. Machine Learning New York McGraw Hill 2017
  42. Nunes , I. and Da Silva , H.S. Artificial Neural Networks: A Practical Course Berlin Springer International Publishing 2018
  43. Kakaee , A.-H. , Rahnama , P. , Paykani , A. , and Mashadi , B. Combining Artificial Neural Network and Multi-Objective Optimization to Reduce a Heavy-Duty Diesel Engine Emissions and Fuel Consumption Journal of Central South University 22 4235 4245 2015
  44. Beale , M.H. , Hagan , M.T. , and Demuth , H.B. 2010 77 81
  45. Rahnama , P. , Paykani , A. , Bordbar , V. , and Reitz , R.D. A Numerical Study of the Effects of Reformer Gas Composition on the Combustion and Emission Characteristics of a Natural Gas/Diesel RCCI Engine Enriched with Reformer Gas Fuel 209 742 753 2017
  46. Rahnama , P. , Paykani , A. , and Reitz , R.D. A Numerical Study of the Effects of Using Hydrogen, Reformer Gas and Nitrogen on Combustion, Emissions and Load Limits of a Heavy Duty Natural Gas/Diesel RCCI Engine Applied Energy 193 182 198 2017
  47. Pétrowski A. , Ben-Hamida S. Evolutionary Algorithms London, England Wiley 2017
  48. Kramer , O. Genetic Algorithm Essentials Berlin Springer International Publishing 2017
  49. Zhang , Q. , Ogren , R.M. , and Kong , S.C. A Comparative Study of Biodiesel Engine Performance Optimization Using Enhanced Hybrid PSO-GA and Basic GA Applied Energy 165 676 684 2016
  50. Zhao , J. and Xu , M. Fuel Economy Optimization of an Atkinson Cycle Engine Using Genetic Algorithm Applied Energy 105 335 348 2013
  51. Dec , J. and Yang , Y. Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline SAE Int. J. Engines 3 1 750 767 2010 https://doi.org/10.4271/2010-01-1086
  52. Moiz , A.A. , Pal , P. , Probst , D. , Pei , Y. et al. A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing SAE Int. J. Commer. Veh. 11 291 306 2018
  53. Farrell , J. 2016
  54. Kavuri , C. and Kokjohn , S.L. Computational Optimization of a Reactivity Controlled Compression Ignition (RCCI) Combustion System Considering Performance at Multiple Modes Simultaneously Fuel 207 702 718 2017
  55. Klos , D. and Kokjohn , S.L. Investigation of the Sources of Combustion Instability in Low-Temperature Combustion Engines Using Response Surface Models International Journal of Engine Research 16 419 440 2015

Cited By