The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
 This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Influence of Inflow Boundary Conditions on High-Pressure Fuel Injection: Assessment Based on LES Approach

  • Journal Article
  • 03-13-02-0009
  • ISSN: 1946-3936, e-ISSN: 1946-3944
Published November 19, 2019 by SAE International in United States
Influence of Inflow Boundary Conditions on High-Pressure Fuel Injection: Assessment Based on LES Approach
Sector:
Citation: Žilić, A., Pachler, K., and Cristofaro, M., "Influence of Inflow Boundary Conditions on High-Pressure Fuel Injection: Assessment Based on LES Approach," SAE Int. J. Engines 13(2):2020.
Language: English

References

  1. Mayer, W., Telaar, J., Branam, R., Schneider, G., and Hussong, J. , “Raman Measurements of Cryogenic Injection at Supercritical Pressure,” Heat Mass Transfer 39:709-719, 2003, doi:10.1007/s00231-002-0315-x.
  2. Oschwald, M., Smith, J., Branam, R., Hussong, J. et al. , “Injection of Fluids into Supercritical Environments,” Combust. Sci. Technol. 178:49-100, 2006, doi:10.1080/00102200500292464.
  3. Srivastava, S. and Jaberi, F. , “Large Eddy Simulations of Complex Multicomponent Diesel Fuels in High Temperature and Pressure Turbulent Flows,” Int. J. of Heat and Mass Transfer 104:819-834, 2017, doi:10.1016/j.ijheatmasstransfer.2016.07.011.
  4. Kahila, H., Wehrfritz, A., Kaario, O., Masouleh, M.G. et al. , “Large-Eddy Simulation on the Influence of Injection Pressure in Reacting Spray A,” Combustion and Flame 191:142-159, 2018, doi:10.1016/j.combustflame.2018.01.004.
  5. Yue, Z. and Reitz, R.D. , “An Equilibrium Phase Spray Model for High-Pressure Fuel Injection and Engine Combustion Simulations,” Int. J. of Engine Research 20:203-215, 2017, doi:10.1177/1468087417744144.
  6. Crua, C., Manin, J., and Pickett, L.M. , “On the Transcritical Mixing of Fuels at Diesel Engine Conditions,” Fuel 208:535-548, 2017, doi:10.1016/j.fuel.2017.06.091.
  7. Wensing, M., Vogel, T., and Götz, G. , “Transition of Diesel Spray to a Supercritical State under Engine Conditions,” Int. J. of Engine Research 17:108-119, 2015, doi:10.1177/1468087415604281.
  8. Banuti, D.T. , “Crossing the Widom-Line-Supercritical Pseudo-Boiling,” Journal of Supercritical Fluids 98:12-16, 2015, doi:10.1016/j.supflu.2014.12.019.
  9. Oefelein, J., Lacaze, G., Dahms, R., Ruiz, A., and Misdariis, A. , “Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes,” SAE Int. J. Engines 7(3):1125-1136, 2014, doi:10.4271/2014-01-1429.
  10. Lacaze, G., Misdariis, A., Ruiz, A., and Oefelein, J.C. , “Analysis of High-Pressure Diesel Fuel Injection Processes Using LES with Real-Fluid Thermodynamics and Transport,” Proceedings of the Combustion Institute 35:1603-1611, 2015, doi:10.1016/j.proci.2014.06.072.
  11. Matheis, J. and Hickel, S. , “Multi-Component Vapor-Liquid Equilibrium Model for LES of High-Pressure Fuel Injection and Application to ECN Spray A,” International Journal of Multiphase Flow 99:294-311, 2018, doi:10.1016/j.ijmultiphaseflow.2017.11.001.
  12. Ma, P.C., Wu, H., Jaravel, T., Bravo, L., and Ihme, M. , “Large-Eddy Simulations of Transcritical Injection and Auto-Ignition Using Diffuse-Interface Method and Finite-Rate Chemistry,” Proceedings of the Combustion Institute 37:3303-3310, 2019, doi:10.1016/j.proci.2018.05.063.
  13. Knudsen, E., Doran, E.M., Mittal, V., Meng, J., and Spurlock, W. , “Compressible Eulerian Needle-to-Target Large Eddy Simulations of a Diesel Fuel Injector,” Proceedings of the Combustion Institute 36:2459-2466, 2017, doi:10.1016/j.proci.2016.08.016.
  14. Peng, D.Y. and Robinson, D.P. , “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam. 15:59-64, 1976, doi:10.1026/l160057a011.
  15. Sander, W. and Weigand, B. , “Direct Numerical Simulation and Analysis of Instability Enhancing Parameters in Liquid Sheets at Moderate Reynolds Numbers,” Physics of Fluids 20:053301, 2008, doi:10.1063/1.2909661.
  16. Cristofaro, M., Edelbauer, W., Koukouvinis, P., and Gavaises, M. , “Large Eddy Simulation of the Internal Injector Flow during Pilot Injection,” in The 10th International Symposium on Cavitation (CAV 2018), Baltimore, MD, 2018.
  17. Battistoni, M., Xue, Q., Som, S., and Pomraning, E. , “Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector,” SAE Int. J. Fuels Lubr. 7(1):167-182, 2014, doi:10.4271/2014-01-1426.
  18. Torelli, R., Matusik, K., Nelli, K., Kastengren, A. et al. , “Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry,” SAE Int. J. Fuels Lubr. 11(4):379-295, 2018, doi:10.4271/2018-01-0303.
  19. Kobayashi, H. , “The Subgrid-Scale Models Based on Coherent Structures for Rotating Homogeneous Turbulence and Turbulent Channel Flow,” Physics of Fluids 17:045104, 2005, doi:10.1063/1.1874212.
  20. AVL List GmbH , “AVL FIRETM Software Manual,” Graz, Austria, CFD Solver Version, 2017.
  21. Patankar, S.V. and Spalding, D.B. , “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer 15:1787-1806, 1972, doi:10.1016/0017-9310(72)90054-3.
  22. Pickett, L.M. and Bruneaux, G. , “Engine Combustion Network,” Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 2011, http://www.sandia.gov/ECN.
  23. Pickett, L.M., Genzale, C.L., and Manin, J. , “Uncertainty Quantification for Liquid Penetration of Evaporating Sprays at Diesel-Like Conditions,” Atomization and Sprays 25:425-452, 2015, doi:10.1615/AtomizSpr.2015010618.
  24. Stotz, I., Lamanna, G., and Weigand, B. , “Fluid Disintegration Studies in a Specialised Shock Tube,” Progress in Propulsion Physics 2:165-206, 2011, doi:10.1051/eucass/201102165.

Cited By