The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
 This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Modeling of Tailpipe NOx Sensor Accuracy

Published August 8, 2018 by SAE International in United States
CFD Modeling of Tailpipe NOx Sensor Accuracy
Citation: Kalyankar, A., Munnannur, A., and Liu, Z., "CFD Modeling of Tailpipe NOx Sensor Accuracy," SAE Int. J. Engines 11(4):435-446, 2018,
Language: English


  1. Koebel, M., Elsener, M., and Kleemann, M., “Urea-SCR: A Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines,” Catalysis Today 59:335-345, 2000, doi:10.1016/S0920-5861(00)00299-6.
  2. Johnson, T., “Vehicular Emissions in Review,” SAE Int. J. Engines 7(3):1207-1227, 2014, doi:10.4271/2014-01-1491.
  3. “Diesel Net Technology Guide,”, accessed Oct. 2016.
  4. Kato, N., Kurachi, H., and Hamada, Y., “Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration,” SAE Technical Paper 980170, 1998, doi:10.4271/980170.
  5. Chi, J., “Control Challenges for Optimal NOx Conversion Efficiency from SCR Aftertreatment Systems,” SAE Technical Paper 2009-01-0905, 2009, doi:10.4271/2009-01-0905.
  6. Peyton Jones, J. and Geveci, M., “Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals,” SAE Int. J. Engines 4(1):1393-1401, 2011, doi:10.4271/2011-01-1157.
  7. Hsieh, M. and Wang, J., “An Extended Kalman Filter for NOx Sensor Ammonia Cross-Sensitivity Elimination in Selective Catalytic Reduction Applications”, Proceedings of the American Control Conference, Baltimore, MD, June 30-July 02, 2010, doi:10.1109/ACC.2010.5531217.
  8. Wang, Y., Zhang, H., and Wang, J., “NOx Sensor Reading Correction in Diesel Engine Selective Catalytic Reduction System Applications,” IEEE/ASME Transactions on Mechatronics 21(1), 2016, doi:10.1109/TMECH.2015.2434846.
  9. Klett, S., Piesche, M., Weyl, H., Wiedenmann, H. et al., “Numerical and Experimental Analysis of the 3D Flow-Pattern in Exhaust Gas Sensors,” SAE Technical Paper 2004-01-1118, 2004, doi:10.4271/2004-01-1118.
  10. Kalyankar, A., Munnannur, A., and Liu, Z., “Predictive Modeling of Impact of ANR Non-Uniformity on Transient SCR System DeNOx Performance,” SAE Technical Paper 2015-01-1055, 2015, doi:10.4271/2015-01-1055.
  11. Liu, Y., Chen, W., Henrichsen, M., Harinath, A. et al., “Analysis of Packaging Impact on Emission Catalyst Design,” SAE Technical Paper 2014-01-1560, 2014, doi:10.4271/2014-01-1560.
  12. McKinley, T., Alleyne, A., and Lee, C., “Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation,” SAE Int. J. Fuels Lubr. 3(1):486-499, 2010, doi:10.4271/2010-01-0883.
  13. Liu, Z., Munnannur, A., Osburn, A., Srinivas, S. et al., “Exhaust Gas Sensor Module”, U.S. Patent 8756913, 2014.
  14. Toema, M., “Physics Based Characterization of Lambda Sensor Output to Control Emissions from Natural Gas Fueled Engines”, Ph.D. thesis, Department of Mechanical and Nuclear Engineering, Kansas State University, 2010.
  15. Klett, S., Piesche, M., Heinzelmann, S., Weyl, H. et al., “Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors,” SAE Technical Paper 2005-01-0037, 2005, doi:10.4271/2005-01-0037.
  16. Göll, S., Piesche, M., Scheffel, M., Moser, T. et al., “Numerical Modeling of the Dynamic Transport of Multi-Component Exhaust Gases in Oxygen Sensors,” SAE Technical Paper 2007-01-0931, 2007, doi:10.4271/2007-01-0931.
  17. Zhang, X., Tennison, P., Yi, J., and William, R., “Design Optimization of an Emissions Sample Probe Using a 3D Computational Fluid Dynamics Tool,” SAE Technical Paper 2013-01-1571, 2013, doi:10.4271/2013-01-1571.
  18. AVL FIRE manual v2014.2.
  19. Xi, Y., Ottinger, N., and Liu, Z., “An Efficient Methodology for Global SCR Kinetic Model Tuning,” presentation at the CLEERS 2014 Workshop, Apr. 2014.

Cited By