This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Drag Reduction and Turbulent Characteristics of a Low Aspect Ratio Wing with Fluidic On-Demand Winglet

Journal Article
01-16-01-0003
ISSN: 1946-3855, e-ISSN: 1946-3901
Published April 20, 2022 by SAE International in United States
Drag Reduction and Turbulent Characteristics of a Low Aspect Ratio
                    Wing with Fluidic On-Demand Winglet
Sector:
Citation: Dutta, D., Dasgupta, A., Lawrence Raj, P., and Debnath, K., "Drag Reduction and Turbulent Characteristics of a Low Aspect Ratio Wing with Fluidic On-Demand Winglet," SAE Int. J. Aerosp. 16(1):2023, https://doi.org/10.4271/01-16-01-0003.
Language: English

References

  1. Narayan , G. and John , B. Effect of Winglets Induced Tip Vortex Structure on the Performance of Subsonic Wings Aerosp Sci Technol 58 2016 328 340
  2. Panagiotou , P. , Kaparos , P. , and Yakinthos , K. Winglet Design and Optimization for a MALE UAV Using CFD Aerosp Sci Technol 39 2014 190 205
  3. Elham , A. and Van Tooren , M.J.L. Winglet Multi-Objective Shape Optimization Aerosp Sci Technol 37 2014 93 109
  4. Catalano , F. and Ceron-Muñoz , H. Experimental Analysis of Aerodynamics Characteristics of Adaptive Multi-Winglets 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV 2005 1231
  5. Belhocine , A. and Omar , W. CFD Analysis of the Brake Disc and the Wheel House through Air Flow: Predictions of Surface Heat Transfer Coefficients (STHC) during Braking Operation J Mech Sci Technol 32 481 490
  6. Belhocine , A. and Wan Omar , W.Z. An Analytical Method for Solving Exact Solutions of the Convective Heat Transfer in Fully Developed Laminar Flow through a Circular Tube Heat Transf Res 46 2017 1342 1353
  7. Belhocine , A. Numerical Study of Heat Transfer in Fully Developed Laminar Flow inside a Circular Tube Int J Adv Manuf Technol 85 2016 2681 2692
  8. Belhocine , A. and Abdullah , O.I. Numerical Simulation of Thermally Developing Turbulent Flow through a Cylindrical Tube Int J Adv Manuf Technol 102 2019 2001 2012
  9. Belhocine , A. and Omar , W.Z.W. Analytical Solution and Numerical Approaches of the Generalized Levèque Equation to Predict the Thermal Boundary Layer ACI Av en Ciencias e Ing 11
  10. Ayers , R.F. and Wilde , M.R. 1956 2021 https://dspace.lib.cranfield.ac.uk/handle/1826/8844
  11. Carafoli , E. and Camarasescu , N. 1983 2021 https://ntrs.nasa.gov/search.jsp?R=19840007056
  12. Briggs , M.M. and Schwind , R.G. Augmentation of Fighter Aircraft Lift and STOL Capability by Blowing Outboard from the Wing Tips 21st Aerospace Sciences Meeting Reno, NV 1983 https://doi.org/10.2514/6.1983-78
  13. Wu , J. , Vakili , A. , Chen , Z. et al. Investigations on the Effects of Discrete Wingtip Jets 21st Aerospace Sciences Meeting Reno, NV 1983 https://doi.org/10.2514/6.1983-546
  14. Tavella , D.A. , Wood , N.J. , Harrits , P. Influence of Tip Blowing on Rectangular Wings 3rd Applied Aerodynamics Conference Colorado Springs, CO 1985 https://doi.org/10.2514/6.1985-5001
  15. Tavella , D.A. , Wood , N.J. , Lee , C.S. et al. Lift Modulation with Lateral Wingtip Blowing J Aircr 25 1988 311 316
  16. White , H. 1963 2021 https://apps.dtic.mil/sti/pdfs/AD0296103.pdf
  17. Lee , C.S. , Tavella , D. , Wood , N.J. et al. Flow Structure and Scaling Laws in Lateral Wingtip Blowing AIAA J 27 1989 1002 1007
  18. Simpson , R.G. , Ahmed , N.A. , and Archer , R.D. Near Field Study of Vortex Attenuation Using Wingtip Blowing Aeronaut J 106 2002 117 120
  19. Mineck , R.E. Study of Potential Aerodynamic Benefits from Spanwise Blowing at Wingtip Nasa Technical Paper 3515 1995 102
  20. Margaris , P. and Gursul , I. Effect of Steady Blowing on Wing Tip Flowfield 2nd AIAA Flow Control Conference Portland, OR 2004 https://doi.org/10.2514/6.2004-2619
  21. Margaris , P. and Gursul , I. Vortex Topology of Wing Tip Blowing Aerosp Sci Technol 14 2010 143 160
  22. Céron-Muñoz , H.D. , Cosin , R. , Coimbra , R.F.F. et al. Experimental Investigation of Wingtip Devices on the Reduction of Induced Drag J Aircr 50 2013 441 449
  23. Wood , N.J. and Roberts , L. Control of Vortical Lift on Delta Wings by Tangential Leading-Edge Blowing J Aircr 25 1988 236 243
  24. Okada , S. and Hiraoka , K. Experimental Studies of Reduction of the Wing Tip Vortex by Suction 21st AIAA Applied Aerodynamics Conference Orlando, FL 2003 https://doi.org/10.2514/6.2003-3533
  25. Tavella , D.A. , Wood , N.J. , Lee , C.S. et al. 1986 2021 https://ntrs.nasa.gov/search.jsp?R=19870014194
  26. Dghim , M. , Ferchichi , M. , Perez , R.E. et al. Near Wake Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation Aerosp Sci Technol 54 2016 88 107
  27. Dghim , M. , Ferchichi , M. , and Fellouah , H. On the Effect of Active Flow Control on the Meandering of a Wingtip Vortex J Fluid Mech 896 2020 A30 https://doi.org/10.1017/jfm.2020.343
  28. Greenblatt , D. Fluidic Control of a Wing Tip Vortex AIAA J 50 2012 375 386
  29. Childs , R.E. Lift Augmentation via Spanwise Tip Blowing: A Numerical Study 24th Aerospace Sciences Meeting Reno, NV 1986 https://doi.org/10.2514/6.1986-474
  30. Craig , K. Computational Study of Blowing on Delta Wings at High Alpha J Aircr 30 1993 833 839
  31. Lim , H. 1994 2021 https://ntrs.nasa.gov/api/citations/19940025256/downloads/19940025256.pdf
  32. Duraisamy , K. and Baeder , J.D. Control of Tip Vortex Structure Using Steady and Oscillatory Blowing 21st AIAA Applied Aerodynamics Conference Orlando, FL 2003 https://doi.org/10.2514/6.2003-3407
  33. Skarolek , V. and Karabelas , S.J. Energy Efficient Active Control of the Flow Past an Aircraft Wing: RANS and LES Evaluation Appl Math Model 40 2016 700 725
  34. Selig , M.S. Summary of Low Speed Airfoil Data Virginia Beach, VA SOARTECH Publications 1995
  35. Leonard , B.P. A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation Comput Methods Appl Mech Eng 19 1979 59 98
  36. Van Doormaal , J.P. and Raithby , G.D. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows Numer Heat Transf 7 1984 147 163
  37. Menter , F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA J 32 1994 1598 1605
  38. 2009
  39. Raushan , P.K. , Singh , S.K. , and Debnath , K. Turbulence Anisotropy with Higher-Order Moments in Flow through Passive Grid under Rigid Boundary Influence Proc Inst Mech Eng Part C J Mech Eng Sci 235 2021 3859 3874 https://doi.org/10.1177/0954406220969736
  40. Roy , S. , Barman , K. , Debnath , K. et al. Quantification of Turbulent Structures in and around the Boundary Region of a Turbulent Round Jet Released into Counter-Flow Meas J Int Meas Confed 171 2021 108758
  41. Pope , S.B. Turbulent Flows Meas Sci Technol 12 2001 2020 2021
  42. Roy , S. , Barman , K. , and Debnath , K. Turbulence Properties in and around the Mixing Region of the Round Jet against Current Phys Scr 95 2020 035007

Cited By