This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparisons of Cloud In Situ Microphysical Properties of Deep Convective Clouds to Appendix D/P Using Data from the High-Altitude Ice Crystals-High Ice Water Content and High Ice Water Content-RADAR I Flight Campaigns

Journal Article
01-14-02-0007
ISSN: 1946-3855, e-ISSN: 1946-3901
Published April 19, 2021 by SAE International in United States
Comparisons of Cloud In Situ Microphysical Properties of Deep Convective Clouds to Appendix D/P Using Data from the High-Altitude Ice Crystals-High Ice Water Content and High Ice Water Content-RADAR I Flight Campaigns
Sector:
Citation: Strapp, J., Schwarzenboeck, A., Bedka, K., Bond, T. et al., "Comparisons of Cloud In Situ Microphysical Properties of Deep Convective Clouds to Appendix D/P Using Data from the High-Altitude Ice Crystals-High Ice Water Content and High Ice Water Content-RADAR I Flight Campaigns," SAE Int. J. Aerosp. 14(2):127-159, 2021, https://doi.org/10.4271/01-14-02-0007.
Language: English

References

  1. 2014
  2. 2015 https://www.easa.europa.eu/document-library/certification-specifications/cs-25-amendment-16
  3. Mazzawy , R.S. , and Strapp , J.W. Appendix D - An Interim Icing Envelope: High Ice Crystal Concentrations and Glaciated Conditions SAE Trans. J. Aerosp. 116 634 642 2007 https://doi.org/10.4271/2007-01-3311
  4. McNaughtan , I.I. 1959
  5. 1958
  6. 2018
  7. Schwarzenboeck , A. , Calmels , A. , Coutris , P. , Delanoe , J. et al. 2018
  8. Schwarzenboeck , A. , Calmels , A. , Coutris , P. , Delanoe , J. et al. 2018
  9. Strapp , J.W. , Schwarzenboeck , A. , Bedka , K. , Bond , T. et al. 2020 http://www.tc.faa.gov/its/worldpac/techrpt/tc18-1.pdf
  10. 1996
  11. 1996
  12. 1996
  13. Bowden , D.T. , Gensemer , A.E. , and Speen , C.A. 1965 http://www.dtic.mil/dtic/tr/fulltext/u2/608865.pdf
  14. Gibb , W.F. 1958
  15. Lawson , R.P. , Angus , L.J. , and Heymsfield , A.J. Cloud Particle Measurements in Thunderstorm Anvils and Possible Threat to Aviation J. Aircraft 35 1 113 121 1998 https://doi.org/10.2514/2.2268
  16. 1996
  17. 1996 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/0FC9B18C4E49D19886256A0A00736F22?OpenDocument
  18. 1999 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/61A90814DF61966686256862007440B8?OpenDocument&Highlight=96-14-09
  19. 1999 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/61A90814DF61966686256862007440B8?OpenDocument&Highlight=94-07-09
  20. 1999 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/61A90814DF61966686256862007440B8?OpenDocument&Highlight=99-15-06
  21. Mason , J. , Strapp , J.W. , and Chow , P. The Ice Particle Threat to Engines in Flight 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV 2006 https://doi.org/10.2514/6.2006-206
  22. Strapp , J.W. , Chow , P. , Maltby , M. , Bezer , A.D. et al. Cloud Microphysical Measurements in Thunderstorm Outflow Regions during Allied/BAe 1997 Flight Trials 37th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV 1999 https://doi.org/10.2514/6.1999-498
  23. Duviver , E. High Altitude Icing Environment International Air Safety and Climate Change Conference Cologne, DE 2010 www.easa.europa.eu/conferences/iascc/doc/
  24. Abraham , J. , Strapp , J.W. , Fogarty , C. , and Wolde , M. Extratropical Transition of Hurricane Michael Bull. Am. Met. Soc. 85 1323 1339 2004 https://doi.org/10.1175/BAMS-85-9-1323
  25. Korolev , A.V. , Emery , E.F. , Strapp , J.W. , Cober , S.G. et al. Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment Bull. Am. Met. Soc . 92 967 973 2011 https://doi.org/10.1175/2010BAMS3141.1
  26. Grandin , A. , Merle , J.-M. , Weber , M. , Strapp , J.W. et al. AIRBUS Flight Tests in High Total Water Content Regions 6th AIAA Atmospheric and Space Environments Conference, AIAA AVIATION Forum 2014 Atlanta, GA 2014 http://dx.doi.org/10.2514/6.2014-2753
  27. Dezitter , F. , Grandin , A. , Brenguier , J.-L. , Hervy , F. et al. HAIC—High Altitude Ice Crystals 5th AIAA Atmospheric and Space Environments Conference San Diego, CA 2013 http://arc.aiaa.org/doi/abs/10.2514/6.2013-2674
  28. Strapp , J.W. , Isaac , G.A. , Korolev , A. , Ratvasky , T.P. et al. 2016 http://www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf
  29. Ratvasky , T.P. , Harrah , S.D. , Strapp , J.W. , Lilie , L.E. et al. Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns SAE Technical Paper 2019-01-2025 2019 https://doi.org/10.4271/2019-01-2027
  30. Bravin , M. , Strapp , J.W. , and Mason , J.G. An Investigation into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database SAE Technical Paper 2015-01-2130 2015 https://doi.org/10.4271/2015-01-2130
  31. Wolde , M. , Nguyen C. , Korolev A. , and Bastian M. Characterization of the Pilot X-Band Radar Responses to the HIWC Environment during the Cayenne HAIC-HIWC 2015 Campaign 8th AIAA Atmospheric and Space Environments Conference Washington, DC 2016 https://doi.org/10.2514/6.2016-4201
  32. Baumgardner , D. , Brenguier , J.-L. , Bucholtz , A. , Coe , H. et al. Airborne Instruments to Measure Atmospheric Aerosol Particles, Clouds and Radiation: A Cook’s Tour of Mature and Emerging Technology Atmos. Res. 102 10 29 2011 https://doi.org/10.1016/j.atmosres.2011.06.021
  33. Davison , C.R. , MacLeod , J.D. , Strapp , J.W. , and Buttsworth , D.R. Isokinetic Total Water Content Probe in a Naturally Aspirating Configuration: Initial Aerodynamic Design and Testing 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV 2008 https://doi.org/10.2514/6.2008-435
  34. Davison , C.R. , MacLeod , J.D. , and Strapp , J.W. Naturally Aspirating Isokinetic Total Water Content Probe: Evaporator Design and Testing 1st AIAA Atmospheric and Space Environments Conference San Antonio, TX 2009 https://doi.org/10.2514/6.2009-3861
  35. Davison , C.R. , Landreville , C. , and MacLeod , J.D. 2010
  36. Davison , C.R. , MacLeod , J.D. , and Ratvasky , T.P. Naturally Aspirating Isokinetic Total Water Content Probe: Preliminary Test Results and Design Modifications 2nd AIAA Atmospheric and Space Environments Conference Toronto, Ontario 2010 https://doi.org/10.2514/6.2010-7530
  37. Davison , C.R. , Ratvasky , T.P. , and Lilie , L.E. Naturally Aspirating Isokinetic Total Water Content Probe: Wind Tunnel Test Results and Design Modifications SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing Chicago, IL 2011 https://doi.org/10.4271/2011-38-0036
  38. Davison , C.R. , Strapp , J.W. , Lilie , L.E. , Ratvasky , T.P. et al. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis 8th AIAA Atmospheric and Space Environments Conference Washington, DC 2016 https://doi.org/10.2514/6.2016-4060
  39. Strapp , J.W. , Lilie , L.E. , Ratvasky , T.P. , Davison , C.R. et al. Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne Field Campaigns 8th AIAA Atmospheric and Space Environments Conference Washington, DC 2016 http://dx.doi.org/10.2514/6.2016-4059
  40. Strapp , J.W. , MacLeod , J.D. , and Lilie , L.E. Calibration of Ice Water Content in a Wind Tunnel/Engine Test Cell Facility 15th International Conference on Clouds and Precipitation Cancun, Mexico 2008
  41. Lance , S. , Brock , C.A. , Rogers , D. , and Gordon , J.A. Water Droplet Calibration of the Cloud Droplet Probe (CDP) and In-Flight Performance in Liquid, Ice and Mixed-Phase Clouds during ARCPAC Atmos. Meas. Tech. 3 1683 1706 2010 https://doi.org/10.5194/amt-3-1683-2010
  42. Lawson , R.P. , O’Connor , D. , Zmarzly , P. , Weaver , K. et al. The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High Speed, High-Resolution Particle Imaging Probe J. Atmos. Oceanic Technol. 23 1462 1477 2006 https://doi.org/10.1175/JTECH1927.1
  43. Leroy , D. , Fontaine , E. , Schwarzenboeck , A. , and Strapp , J.W. Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameters from In Situ Measurements J. Atmos. Oceanic Technol. 33 2461 2476 2016 https://doi.org/10.1175/JTECH-D-15-0151.1
  44. Korolev , A. , and Isaac , G.A. Shattering during Sampling by OAPs and HVPS. Part I: Snow Particles J. Atmospheric Ocean. Technol. 22 528 542 2005 https://doi.org/10.1175/JTECH1720.1
  45. Field , P.R. , Heymsfield , A.J. , and Bansemer , A. Shattering and Particle Interarrival Times Measured by Optical Array Probes in Ice Clouds J. Atmospheric Ocean. Technol. 23 1357 1371 2006 https://doi.org/10.1175/JTECH1922.1
  46. Lawson , R.P. Effects of Ice Particles Shattering on the 2D-S Probe Atmos. Meas. Tech. 4 1361 1381 2011 https://doi.org/10.5194/amt-4-1361-2011
  47. Korolev , A.V. , and Field , P.R. Assessment of the Performance of the Inter-arrival Time Algorithm to Identify Ice Shattering Artifacts in Cloud Particle Probe Measurements Atmos. Meas. Tech. 8 761 777 2015 https://doi.org/10.5194/amt-8-761-2015
  48. Korolev , A.V. 2011
  49. Korolev , A.V. , Emery , E. , and Creelman , K. Modification and Tests of Particle Probe Tips to Mitigate Effects of Ice Shattering J. Atmos. Oceanic Technol. 30 690 708 2013 https://doi.org/10.1175/JTECH-D-12-00142.1
  50. Korolev , A.V. , McFarquhar , G. , Field , P.R. , Franklin , C. et al. Mixed-Phase Clouds: Progress and Challenges Meteorol. Monogr. 58 5.1 5.50 2017 https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1
  51. Baumgardner , D. , and Rodi , A. Laboratory and Wind Tunnel Evaluations of the Rosemount Icing Detector J. Atmos. Oceanic Technol. 6 971 979 1989 https://doi.org/10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2
  52. Korolev , A.V. , Strapp , J.W. , and Isaac , G.A. The Nevzorov Airborne Hot-Wire LWC-TWC Probe: Principle of Operation and Performance Characteristics J. Atmos. Ocean. Technol. 15 1495 1510 1998 https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2
  53. Gryzch , M. and Mason , J.G. Weather Conditions Associated with Jet Engine Power Loss and Damage due to Ingestion of Ice Particles: What We’ve Learned through 2009 14th Conference on Aviation, Range and Aerospace Meteorology, AMS Atlanta, GA 2010
  54. Mason , J.G. , and Grzych , M. The Challenges Identifying Weather Associated with Jet Engine Ice Crystal Icing SAE Technical Paper 2011-38-0094 2011 https://doi.org/10.4271/2011-38-0094
  55. Grzych , M. , Tritz , T. , Mason , J.G. , Bravin , M. et al. Studies of Cloud Characteristics Related to Jet Engine Ice Crystal Icing Utilizing Infrared Satellite Imagery SAE Technical Paper 2015-01-2086 2015 https://doi.org/10.4271/2015-01-2086
  56. Bravin , M. , and Strapp , J.W. A Continuing Investigation of Diurnal and Location Trends in an Ice Crystal Icing Engine Event Database SAE Int. J. Advances & Curr. Prac. in Mobility 2 1 90 105 2020 https://doi.org/10.4271/2019-01-1964
  57. Leroy , D. , Coutris , P. , Fontaine , E. , Schwarzenboeck , A. et al. HAIC/HIWC Field Campaigns - Specific Findings on Ice Crystals Characteristics in High Ice Water Content Cloud Regions 8th AIAA Atmospheric and Space Environments Conference Washington, DC 2016 http://dx.doi.org/10.2514/6.2016-4056
  58. Cober , S.G. , Isaac , G.A. , Korolev , A.V. , and Strapp , J.W. Assessing Cloud-Phase Conditions J. Appl. Meteor. 40 1967 1983 2001 https://doi.org/10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2
  59. Stith , J.L. , Dye , J.E. , Bansemer , A. , Heymsfield , A. et al. Microphysical Observations of Tropical Clouds J. Appl. Meteor. 41 97 117 2002 https://doi.org/10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2
  60. Black , R. , and Hallett , J. Observations of the Ice Distributions in Hurricanes J. Atmos. Sci. 43 802 822 1986 https://doi.org/10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2
  61. McFarquhar , G.M. , and Heymsfield , A.J. Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment J. Atmos. Sci. 53 2401 2423 1996 https://doi.org/10.1175/1520-0469.053<2401:MCOTAS>2.0.CO;2
  62. Lawson , P. , Gurganus , C. , Woods , S. , and Bruintjes , R. Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a ‘New’ Secondary Ice Process J. Atmos. Sci. 74 2899 2920 2017 https://doi.org/10.1175/JAS-D-17-0033.1
  63. Rosenfeld , D. , Woodley , W.L. , Krauss , T.W. , and Makitov , V. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina J. Appl. Meteor. Climatol. 45 1261 1281 2006 https://doi.org/10.1175/JAM2403.1
  64. Bouchard , A. , Lalande , P. , Laroche , P. , Blanchet , P. et al. Relationship between Airborne Electrical and Total Water Content Measurements in Ice Clouds Atmospheric Research 237 104836 2019 https://doi.org/10.1016/j.atmosres.2019.104836
  65. NIST/SEMATECH e-Handbook of Statistical Methods 2012 http://www.itl.nist.gov.div898/handbook/
  66. Korolev , A.V. , Heckman , I. , Wolde , M. , Ackerman , A.S. et al. A New Look at the Environmental Conditions Favorable to Secondary Ice Production Atmos. Chem. Phys. 20 1391 1429 2020 https://doi.org/10.5194/acp-20-1391-2020
  67. Coutris , P. , Schwarzenboeck , A. , Leroy , D. , Grandin , A. et al. Uncertainty of the Ice Particles Median Mass Diameters Retrieved from the HAIC-HIWC Dataset: A Study of the Influence of the Mass Retrieval Method SAE Int. J. Adv. & Curr. Prac. in Mobility 2 1 140 150 2020 https://doi.org/10.4271/2019-01-1983
  68. Allbright , M.D. , Recker , E.R. , Reed , R.J. , and Dang , R. The Diurnal Variation of Deep Convection and Inferred Precipitation in the Central Tropical Pacific during January-February 1979 Mon. Wea. Rev. 113 1663 1680 1985 https://doi.org/10.1175/1520-0493(1985)113<1663:TDVODC>2.0.CO;2
  69. Randall , D.A. , Harshvardhan , and Dazlich , D.A. Diurnal Variability of the Hydrological Cycle in a GCM J. Atmos. Sci. 48 40 62 1991 https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2
  70. Chen , S.S. , and Houze , R.A. Jr. Diurnal Variation and Life Cycle of Deep Convective Systems over the Tropical Pacific Warm Pool Quart. J. R. Meteor. Soc. 123 357 388 1997 https://doi.org/10.1002/qj.49712353806
  71. Liu , C. , and Zipser , E.J. Diurnal Cycles of Precipitation, Clouds, and Lightning in the Tropics from 9 Years of TRMM Observations Geophys. Res. Letters 35 L04819 2008 https://doi.org/10.1029/2007GL032437
  72. Murakami , M. Analysis if the Deep Convective Activity Over the Western Pacific and Southeast Asia, Part 1: Diurnal Variation J. Met. Soc. Japan 61 60 76 1983 https://doi.org/10.2151/jmsj1965.61.1_60
  73. May , P.T. , Long , C. , and Protat , A. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin, Australia) J. Climate 25 5309 5326 2012 https://doi.org/10.1175/JCLI-D-11-00538.1
  74. Protat , A. , Rauniyar , S. , Kumar , V.V. , and Strapp , J.W. Optimizing the Probability of Flying in High Ice Water Content Conditions in the Tropics Using a Regional-Scale Climatology of Convective Cell Properties J. Appl. Meteor. Clim. 53 11 2438 2456 2014 https://doi.org/10.1175/JAMC-D-14-0002.1
  75. Rosenfeld , D. , Lohmann , U. , Raga , G. , O’Dowd , C. et al. Flood or Drought: How do Aerosols Affect Precipitation? Science 321 1309 1313 2008 https://doi.org/10.1126/science.1160606
  76. Braga , R.C. , Rosenfeld , D. , Weigel , R. , Jurkat , T. et al. Further Evidence for CCN Aerosol Concentrations Determining the Height of Warm Rain and Ice Initiation in Convective Clouds over the Amazon Basin Atmos. Chem. Phys. 17 14433 14456 2017 https://doi.org/10.5194/acp-17-14433-2017
  77. Forster , P. , Ramaswamy , V. , Artaxo , P. , Berntsen , T. et al. Changes in Atmospheric Constituents and in Radiative Forcing Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Solomon , S. , Qin , D. , Manning , M. , Chen , Z. et al. Cambridge, U.K./New York Cambridge University Press 2007
  78. Zipser , E.J. , Liu , C. , Cecil , D.J. , Nesbitt , S.W. et al. Where Are the Most Intense Thunderstorms on Earth? Bull. Am. Meteor. Soc. 87 1057 1071 2006 https://doi.org/10.1175/BAMS-87-8-1057
  79. Zipser , E.J. , and Lutz , K.R. The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? Mon. Wea. Rev. 122 1751 1759 1994 https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2
  80. Orville , R.E. , and Henderson , R.W. Global Distribution of Midnight Lightning: September 1977 to August 1978 Mon. Wea. Rev. 114 2640 2653 1986 https://doi.org/10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2
  81. Zipser , E.J. Deep Cumulonimbus Cloud Systems in the Tropics with and without Lightning Mon. Wea. Rev. 122 1837 1851 1994 https://doi.org/10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2
  82. Lewis , W. and Bergrun , N.R. 1952 https://digital.library.unt.edu/ark:/67531/metadc53548/: https://digital.library.unt.edu
  83. American Meteorological Society 2016 https://glossary.ametsoc.org/wiki/Supercooled_large_drops
  84. 2014
  85. https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=flight-day&exp=HIWC&ds=Falcon&yy=2014&mm=02&dd=02

Cited By