This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Microturbine Blade Cooling

Journal Article
01-13-02-0008
ISSN: 1946-3855, e-ISSN: 1946-3901
Published May 20, 2020 by SAE International in United States
Microturbine Blade Cooling
Sector:
Citation: Oliveira, E. and Barros, J., "Microturbine Blade Cooling," SAE Int. J. Aerosp. 14(1):17-32, 2021, https://doi.org/10.4271/01-13-02-0008.
Language: English

References

  1. Soares , C. Microturbines - Applications for Distributed Energy Systems 1st New York Butterworth-Heinemann 2007 320 9780080549484
  2. Bogard , D.G. , Thole , K.A. Gas Turbine Film Cooling Journal of Propulsion and Power 22 2 249 270 March-April, 2006 https://doi.org/10.2514/1.18034
  3. Ghodke , C.D. Gas Turbine Blade Cooling - PT-196 SAE International 2018 236 978-0-7680-9502-9
  4. Garg , V.K. Heat Transfer Research on Gas Turbine Airfoils at NASA GRC International Journal of Heat and Fluid Flow 23 109 136 2002 https://doi.org/10.1016/S0142-727X(01)00144-8
  5. Gao , W.J. , Yue , Z.F. , Li , L. , Zhao , Z.N. , and Tong , F.J. Numerical Simulation on Film Cooling with Compound Angle of Blade Leading Edge Model for Gas Turbine International Journal of Heat and Mass Transfer 115 839 855 2017 https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.105
  6. Liu , Z. , Ye , L.V. , Wang , C. , and Fen , Z. Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine Applied Thermal Engineering 73 2 1432 1443 2014 https://doi.org/10.1016/j.applthermaleng.2014.05.060
  7. Haven , B.A. , Yamagata , D.K. , Kurosaka , S. , and Yamawaki , T.M. 1997 https://doi.org/10.1115/97-GT-045
  8. Du , C. , Li , L. , Fan , X. , and Feng , Z. Rotational Influences on Aerodynamic and Heat Transfer Behavior of Gas Turbine Blade Vortex Cooling with Bleed Holes Applied Thermal Engineering 121 302 313 July, 2017 https://doi.org/10.1016/j.applthermaleng.2017.04.026
  9. Du , C. , Li , L. , Wu , X. , and Feng , Z. Effect of jet Nozzle Geometry on Flow and Heat Transfer Performance of Vortex Cooling for Gas Turbine Blade Leading Edge Applied Thermal Engineering 93 1020 1032 2016 https://doi.org/10.1016/j.applthermaleng.2015.09.08710.1016
  10. Liu , Z. , Li , J. , Feng , Z. , and Simon , T. Numerical Study on the Effect of Jet Nozzle Aspect Ratio and Jet Angle on Swirl Cooling in a Model of a Turbine Blade Leading Edge Cooling Passage International Journal of Heat and Mass Transfer 90 986 1000 2015 https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.050
  11. Fan , X. , Du , C. , Li , L. , and Li , S. Numerical Simulation on Effects of Film Hole Geometry and Mass Flow on Vortex Cooling Behavior for Gas Turbine Blade Leading Edge Applied Thermal Engineering 112 472 483 2017 https://doi.org/10.1016/j.applthermaleng.2016.10.059
  12. Chi , Z. , Kan , R. , Ren , J. , and Jiang , H. Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure International Journal of Heat and Mass Transfer 64 567 580 2013 https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.052
  13. Li , X. and Wang , T. Simulation of Film Cooling Enhancement with Mist Injection ASME Turbo Expo, 2005 Reno-Tahoe, Nevada, USA Dec 09, 2005 509 519 https://doi.org/10.1115/1.2171695
  14. Wang , T. and Li , X. Mist Film Cooling Simulation at Gas Turbine Operating Conditions International Journal of Heat and Mass Transfer 51 5305 5317 2008 https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.040
  15. Shokouhmand , H. , Heyehat , M. , and Ahmadzadegan , A. Buoyancy Effects on a Mist/Air Impingement Jet World Congress on Engineering, 2008 London 2008
  16. Kumari , N. , Bahadur , V. , Hodes , M. , Salamon , T. et al. Analysis of Evaporating Mist Flow for Enhanced Convective Heat Transfer International Journal of Heat and Mass Transfer 53 3346 3356 2010 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.027
  17. Jiang , Y. , Zheng , Q. , Dong , P. , Zhang , H. , and Yu , F. Research on Heavy-Duty Gas Turbine Vane High Efficiency Cooling Performance Considering Coolant Phase Transfer Applied Thermal Engineering 73 1177 1193 2014 https://doi.org/10.1016/j.applthermaleng.2014.09.023
  18. Xie , G. , Sundén , B. , and Wang , L. Parametric Study on Heat Transfer Enhancement and Pressure Drop of an Internal Blade Tip-Wall with Pin-Fin Arrays Heat Mass Transfer 47 45 57 2011 https://doi.org/10.1007/s00231-010-0671-x
  19. Tan , X. , Zhang , J. , Liu , B. , and Zhu , X. Experimental Investigation on Heat Transfer Enhancement of Mist/Air Impingement Jet Berlin Heidelberg Science China Press and Springer-Verlag 2013 2456 2464 https://doi.org/10.1007/s11431-013-5321-3
  20. Delibra , G. , Borello , D. , Hanjali , K. , and Rispoli , F. LES of Heat Transfer in a Channel with a Staggered Pin Matrix Armenio , V. , Geurts , B. , and Fröhlich , J. Direct and Large-Eddy Simulation 13 2010 311 316 https://doi.org/10.1007/978-90-481-3652-045
  21. Han , J.C. , Dutta , S. , and Ekkad , S. Gas Turbine Heat Transfer and Cooling Technology Boca Raton CRC Press 2012 887 9781439855683
  22. Singh , P. , Li , W. , Ekkad , S.V. , and Ren , J. A New Cooling Design for Rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade International Journal of Heat and Mass Transfer 115 6 20 2017 https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.128
  23. McDonald , C.F. and Rodgers , C. Small Recuperated Ceramic Microturbine Demonstrator Concept Applied Thermal Engineering 28 60 74 2007 https://doi.org/10.1016/j.applthermaleng.2007.01.020
  24. Shrechecking , K. Gas Turbine for Model Aircraft Worcestershire Traplet Publication 1994 104 1951058916
  25. ANSYS® MESHING TM 2019
  26. ANSYS® FLUENT 2019
  27. Menter , F.R. Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications AIAA Journal 32 8 1598 1605 1598 1605 Aug. 1994 https://doi.org/10.2514/3.12149
  28. Wilcox , D.C. Turbulence Modeling for CFD La Canada, California DCW Industries, Inc. 1998
  29. Celik , I.B. , Ghia , U. , Roache , P.J. , Freitas , C.J. et al. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications American Society of Mechanical Engineers 130 7 078001 2008 https://doi.org/10.1115/1.2960953
  30. Menter , F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA Journal 32 8 1598 1605 August, 1994 https://doi.org/10.2514/3.12149
  31. Shih , T.H. , Liou , W.W. , Shabbir , A. , Yang , Z. , and Zhu , J. A New - Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation Computers Fluids 24 3 227 238 1995 https://doi.org/10.1016/0045-7930(94)00032-T
  32. Roache , P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies Journal of Fluids Engineering 116 405 413 1994 https://doi.org/10.1115/1.2910291
  33. Saravanamuttoo , H.I.H. , Rogers , G.F.C. , and Cohen , H. Gas Turbine Theory 5th England Prentice Hall 2001 483
  34. Frenklach , M. , Wang , H. , Goldenberg , M. , Smith , G.P. , Golden , D.M. , Bowman , C.T. , Hanson , R.K. , Gardiner , W.C. , and Lissianski , V. August, 1995 http://combustion.berkeley.edu/gri-mech/version30/text30.html
  35. Warnatz , J. , Maas , U. , and Dibble , R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation 3rd Heidelberg Springer 2001
  36. Melconian , J.O. and Modak , A.T. Combustor Design, in Sawyer’s Gas Turbine Engineering Handbook 1 Turbomachinery International Publications 1985
  37. Lefebvre , A.H. and McDonell , V.G. Atomization and Sprays 2nd Boca Raton CRC Press 2017

Cited By