Multifunctional Properties of Structural Gel Electrolytes
TBMG-5818
10/01/2009
- Content
Due to the demand for more advanced and lightweight systems, multifunctional composite structures that can function as electrochemical energy converters, while bearing mechanical load, are in development. This research involves a materials-based approach in which each component of the system serves to bear and/or efficiently transfer load. In this iteration, multifunctional structural gel electrolytes were prepared by the integration of conductive pathways using non-aqueous solvents into structural resin networks. Polyethylene glycol (200 MW) and propylene carbonate were used as the non-aqueous solvents, while vinyl ester and epoxy resin were used as structural resins. The monomer and solvents were incorporated together and polymerized to create conductive pathways in cross-linked networks. The impact of chemistry and weight fraction of both liquid and resin were investigated on the electrochemical-mechanical response of the resulting system.
- Citation
- "Multifunctional Properties of Structural Gel Electrolytes," Mobility Engineering, October 1, 2009.