Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent EDGE Research Reports

Browse All 145

Recent Books

Browse All 975

Recently Published

Browse All
Improving the overall thermal management strategy in electric vehicles can directly or indirectly improve battery efficiency and vehicle range. The aim of this study is to simulate and improve the performance of motor cooling lines developed for an electric bus using 1D computational fluid dynamics models. In the study, simulation studies were carried out for the 12-m EV Citivolt vehicle of Anadolu Isuzu. Design parameters such as placement of flow lines and component selection were decided thanks to 1D models developed. The design obtained at the end of the study was supported by tests and experimental studies. As a result, it was seen that the components in the line correctly detected the flow rate and pressure losses with a maximum error rate of 8% and an average error rate of 4.8%. Additionally, the components on the line were added to the model via their own characteristic dp-Q curves. In this way, it has been seen that these components, which contain complex flow lines, can be
Turan, AzimYaki, EmrahBirgül, Çağrı EmreKaya, Hakan
Many sources and paths cause interior cabin noise. Some noise from an electric vehicle is unique and different from a vehicle with an internal combustion engine. Especially, whine noise occurs due to the particular orders of the electromagnetic force of an electric motor and transmission gears, which is tonal and usually reaches high frequencies. This paper covers structure-borne (SB) and airborne (AB) aspects to estimate whine, and the difference between the two characteristics is distinguished. The focus lies mainly on the process of virtual vehicle development and application for performance improvement. First, to predict SB whine, an e-powertrain is modeled as a finite element model (FEM), and electromagnetic (EM) forces are calculated. A vehicle model is also modeled as an FEM, in which interior sound packages are carefully modeled as they play an important role in the medium-frequency region. The e-powertrain and vehicle models (being simulated separately) are combined to obtain
Yoo, Ji WooChae, Ki-SangChoi, JaeHyukKim, MyunggyuCho, SeunghyeonCoster, ChristopheVan Gils, Anneleen
The automotive industry has been funding warranty repair work for many decades. The most common vehicle warranty is 3 years or 36,000 miles [1]. Original equipment manufacturers (OEM) in North America have dealers record all the work completed and submit claims for the work that qualifies for warranty reimbursement [2]. The OEM reviews the request and pays dealers for the work performed. In addition to payments, the database is also used to complete quality analysis for the vehicles. Often the software being used by dealerships is old and not designed for quality analysis. Reviewing all the warranty work done can be an arduous task. OEMs can receive 100,000 or more claims each day. To speed up the analysis process the OEMs will divide the repair work into sections based on the segment of the vehicle requiring work. This categorization allows the OEMs to spread the work across many experts in the company. But what does the OEMs do when the problem cannot be located at the dealership
Hand, JodyHall, SawyerCarr, MichaelWorm, Jeremy
The current research elucidates the application of response surface methodology to optimize the collective impact of methanol–isobutanol–gasoline blends and nanolubricants on the operational parameters of a spark-ignition engine. Diverse alcohol blends in conjunction with gasoline are employed in engine trials at 2500 rpm across varying engine loads. The alcohol blends exhibit notable enhancements in brake thermal efficiency, peak in-cylinder pressure, and heat release rate. At 2500 rpm and 75% load, the break thermal efficiency of iBM15 surpasses that of gasoline by 33.5%. Alcohol blends significantly reduce hydrocarbon and carbon monoxide emissions compared to gasoline. The iBM15 demonstrates a reduction of 25.2% and 51.12% in vibration along the Z and Y axes, respectively, relative to gasoline. As per the response surface methodology analysis, the optimal parameters are identified: an alcohol content of 29.99%, an engine load of 99.06%, and a nanolubricant concentration of 0.1%. It
Bharath , Bhavin KSelvan , V. Arul Mozhi
The controller area network (CAN) bus, the prevailing standard for in-vehicle networking (IVN), has been used for more than four decades, despite its simple architecture, to establish communications between electronic control units (ECUs). Weight, maintenance overheads, improved flexibility, and wiring complexity escalate as the quantity of ECUs rises, especially for high-demand autonomous vehicles (AVs). The primary objective of this study is to examine and discuss the significant challenges that arise during the migration from a wired CAN to a wireless CAN (WCAN). Suggested remedies include changing the configuration of the conventional ECU, creating a hidden wireless communication domain for each AV, and developing a plan to counteract the jamming signals. The simulation of the proposed WCAN was done using MATLAB and validated using OPNET analysis. The results showed that the packet loss of the eavesdropping electronic control unit ranged from 63% to 100%. Anti-jamming results show
Ali, ZeinaIbrahim, Qutaiba
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.187 inch (4.75 mm) thick, inclusive, and plate up to 4.000 inches (101.6 mm) thick, inclusive
AMS F Corrosion and Heat Resistant Alloys Committee
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7
AE-8D Wire and Cable Committee
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, in-flight entertainment equipment, etc.) meet the seat technical standard order (TSO) minimum performance standards (MPS). These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49, Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) provides recommended use and installation procedures for bonded cable harness supports
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification covers a magnesium alloy in the form of sand castings
AMS D Nonferrous Alloys Committee
The scope of this SAE Recommended Practice is limited to cranes mounted on a fixed platform lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a work boat as defined in 3.14
Cranes and Lifting Devices Committee
This specification covers a copper-nickel-tin alloy in the form of castings, made using the investment process unless sand or centrifugal processes are agreed upon by the purchaser (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers pyrometric requirements for equipment used for the thermal processing of metallic materials. Specifically, it covers temperature sensors, instrumentation, thermal processing equipment, correction factors and instrument offsets, system accuracy tests, and temperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specification(s
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Information Report (AIR) is a process verification guide for evaluating implementation of key factors in repair of fiber reinforced composite bonded parts or assemblies in a repair shop, hangar, or on-wing environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair and is intended to promote consistency and reliability
AMS CACRC Commercial Aircraft Composite Repair Committee
The scope of this SAE Information Report is limited to a lift crane mounted on a fixed or floating platform, lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a workboat as defined in 3.15
Cranes and Lifting Devices Committee
The viscoelastic response of pure Al and commercial 6082 and 6082-T6 (Al–Mg–Si) alloys is measured with dynamic–mechanical analyzer as a function of temperature (ranging from 35 to 425°C) and loading frequency (ranging from 0.01 to 100 Hz). The measured data (the storage modulus, loss modulus, and mechanical damping) are compared to available transmission electron microscopy and differential scanning calorimetry data, to ascertain whether unexplained variations of the viscoelastic behavior of the alloys can be correlated to phase transformations. The results suggest that some of these variations may be controlled by the formation and dissolution of metastable phases, such as Guinier–Preston (GP) zones and phases β″, β′, and B′. Indeed, GP zones and phase β″ have been reported to control other mechanical properties. However, due to the high complexity of the aging path of Al–Mg–Si alloys, with formation and dissolution reactions of many precipitate types overlapping along wide
Rojas, Jose I.Contel, AlejandroCrespo, Daniel
Since the beginning of time, people have desired the best materials for production. Metals are often too heavy to be used in manufacturing. Polymer matrix composites (PMC) can be considered more dependable than metals in practical applications because of their high strength-to-weight ratio so it is a good alternative of metals. The article’s objective is to investigate the various PMC properties that are reinforced with carbon fiber. CFRP (Carbon fiber-reinforced polymer) was first made using the hand layup method with carbon fiber as a reinforcement and epoxy resin as a matrix after a thorough literature review. As CFRP have higher stiffness and superior “strength-to-weight ratio,” fiber-reinforced polymer (FRP) composites perform notably better than various conventional metallic materials. The qualities of the matrix can be changed to enhance the characterization of FRP composites. The mechanical qualities of FRP composites have risen as a result of significant advancements in the
Haider, RehanSingh, Pradeep KumarSharma, Kamal
The high-pressure common rail fuel injection system for diesel engines is one of the core technologies that need to be addressed in the automobile industry. The control of the internal flow in multi-hole injector nozzles is the key to achieve accurate control of the fuel injection and spray process. There are various types of research on cavitation phenomena currently conducted on various types of test benches, but there is no conclusive discussion. Therefore, it is to summarize these studies in order to identify the highlights of existing studies and point out their shortcomings. This article compares and analyzes the developing patterns of cavitation phenomena on four test benches through literature review and has obtained rich research data on these four types of nozzles, but they still have their own shortcomings at the same time, even with numerical simulation. Based on this, the article has conducted a detailed and critical discussion on the current research situation and
Cao, TianyiJin, JianjiaoQu, Yu Pu
Understanding driving scenes and communicating automated vehicle decisions are key requirements for trustworthy automated driving. In this article, we introduce the qualitative explainable graph (QXG), which is a unified symbolic and qualitative representation for scene understanding in urban mobility. The QXG enables interpreting an automated vehicle’s environment using sensor data and machine learning models. It utilizes spatiotemporal graphs and qualitative constraints to extract scene semantics from raw sensor inputs, such as LiDAR and camera data, offering an interpretable scene model. A QXG can be incrementally constructed in real-time, making it a versatile tool for in-vehicle explanations across various sensor types. Our research showcases the potential of QXG, particularly in the context of automated driving, where it can rationalize decisions by linking the graph with observed actions. These explanations can serve diverse purposes, from informing passengers and alerting
Belmecheri, NassimGotlieb, ArnaudLazaar, NadjibSpieker, Helge
ARINC 858 Part 2 provides aviation ground system gateway considerations necessary to transition to the Internet Protocol Suite (IPS). ARINC 858 Part 2 describes the principles of operation for an IPS gateway that enables ACARS application messages to be exchanged between an IPS aircraft and a ground ACARS host. ARINC 858 Part 2 also describes the principles of operation for an IPS gateway that enables OSI-based application messages to be exchanged between an IPS host and an OSI end system. This product was developed in coordination with ICAO WG-I, RTCA SC-223, and EUROCAE WG-108
Airlines Electronic Engineering Committee
Supply chain management is key to industry efficiency, while information security and transparency are at the core of operations management. Blockchain technology shows great potential in this regard and can effectively make up for existing shortcomings. This article deeply explores the application of blockchain in new energy vehicle supply chain management, focusing on enhancing the systematization and collaboration of the supply chain through smart contract mechanisms. We established a collaborative contract model for the three-level supply chain. Especially from the perspective of the intermediate supply chain, we designed a smart contract mechanism to optimize key links such as order processing, payment, and logistics tracking, and used the alliance chain to ensure the safe sharing and sharing of information. At the same time, we have also developed an interactive system for each link of the supply chain and achieved smooth interaction in the new energy vehicle supply chain by
Wang, Peng