Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 163

Recent Books

Browse All 942

Recently Published

Browse All
To reduce carbon dioxide emissions from automobiles, the introduction of electric vehicles to the market is important; however, it is challenging to replace all existing IC engine vehicles with electric ones. Consequently, there is increasing anticipation for the use of carbon-neutral fuels, such as e-fuels. This study investigates the effects of GTL (gas-to-liquid), as a substitute for e-fuel, produced from natural gas via the Fischer–Tropsch synthesis method and polyoxymethylene dimethyl ether (OMEmix) produced from methanol, on engine performance. Additionally, combustion image analysis was conducted using a rapid compression and expansion machine (RCEM). GTL fuel combusts similarly to conventional diesel fuel but has slightly lower smoke emissions because it does not contain aromatic hydrocarbons. Further, its high cetane number results in better ignition properties. During the combustion, unburnt hydrocarbons and smoke are generated in the spray flame interference region near the
Shibata, GenYuan, HaoyuYamamoto, HiroyaTanaka, ShusukeOgawa, Hideyuki
Electric vehicles (EVs) represent a promising solution to reduce environmental issues and decrease dependency on fossil fuels. The main drawback associated with the direct torque control (DTC) scheme is that it is incapable of improving the efficiency and response time of the EVs. To overcome this problem, integrating deep learning (DL) techniques into DTC offers a valuable solution to enhance the performance of the drive system of EVs. This article introduces three control methods to improve the output for DTC-based BLDC motor drives: a traditional proportional–integral for speed controller (speed PI), a neural network fitting (NNF)-based speed controller (speed NNF), and a custom neural (CN) network-based speed controller (speed CN). The NNF and CN are DL techniques designed to overcome the limitations of conventional PI controllers, such as retaining the percentage overshoot, settling times, and improving the system’s efficiency. The CN controller reduced the torque ripple by 15
Patel, SandeshYadav, ShekharTiwari, Nitesh
With the continuous upgrading of emission regulations for internal combustion engines, the nitrogen oxide treatment capacity of selective catalytic reduction (SCR) aftertreatment needs to be continuously improved. In this study, based on a prototype of SCR aftertreatment, the impact of the arrangement of key components in the SCR system (urea injector, mixer, and catalyst unit) on ammonia uniformity was investigated. First, parameterized designs of the urea injector, mixer, and SCR unit were conducted. Then, using computational fluid dynamics (CFD), numerical simulations of the established aftertreatment system models with different parameter factors were performed under a high-exhaust temperature and a low-exhaust temperature conditions to study the impact of each individual parameter on ammonia uniformity. Finally, an optimized solution was designed based on the observed patterns, and the optimized samples were tested on an engine performance and emission test bench to compare their
Jie, WangJin, JianjiaoWu, Yifan
The introduction of autonomous vehicles (AVs) promises significant improvements to road safety and traffic congestion. However, mixed-autonomy traffic remains a major challenge as AVs are ill-suited to cooperate with human drivers in complex scenarios like intersection navigation. Specifically, human drivers use social cooperation and cues to navigate intersections while AVs rely on conservative driving behaviors that can lead to rear-end collisions, frustration from other road users, and inefficient travel. Using a virtual driving simulator, this study investigates the use of a human factors-informed cooperation model to reduce AV reliance on conservative driving behaviors. Four intersection scenarios, each involving a left-turning AV and a human driver proceeding straight, were designed to obfuscate the right-of-way. The classification models were trained to predict the future priority-taking behavior of the human driver. Results indicate that AVs employing the human factors-informed
Ziraldo, ErikaOliver, Michele
Driver fatigue and drowsiness portray an integral role in the frequency of road accidents. Putting in place policies intended to alert drivers is imperative for averting accidents and saving lives. This work aims to improve road safety by devising a real-time driver drowsiness detection system. To accomplish this, drowsiness is detected using YOLOv8 algorithm optimized with the whale optimization algorithm (WOA). Key facial cues such as eye closure and yawning frequency are monitored to analyze driving behavior by the suggested approach. YOLOv8 model optimized with WOA processes video streams in real time and sets off an alarm on the graphical user interface (GUI) dashboard based on the output. The proposed approach was investigated using two datasets namely UTA-RLDD and D3S. A 640 × 640 pixel image with a frame rate of 50 fps was used in the investigation. The mAP at 0.5 (mean average precision at 0.5 IoU (intersection over union) threshold) of drowsiness detection system using UTA
Nandal, PriyankaPahal, SudeshSharma, TriptiOmesh, Omesh
This study addresses the control problem of the electronic throttle valve (ETV) system in the presence of unmatched perturbations. Most previous works have ignored the effect of actuating motor inductance, which results in an approximated model with a matched perturbation structure. However, if this assumption is not permitted, the ETV model turns into an exact model with unmatched perturbation and the control task becomes more challenging. In this article, a backstepping control design based on a quasi-sliding mode disturbance observer (BS-QSMDO) has been proposed to effectively reject the unmatched perturbation in the ETV system. A rigorous stability analysis has been conducted to prove the ultimate boundedness for disturbance estimation error and tracking error. The key to this proposed observer-based control design is to obtain a robust and chattering-free controller based on a quasi-sliding mode methodology. The proposed quasi-sliding mode observer works to estimate the unmatched
Hameed, Akram HashimAl-Samarraie, Shibly AhmedHumaidi, Amjad Jaleel
This SAE Recommended Practice covers the design and application of a 120 VAC single phase engine based auxiliary power unit or GENSET. This document is intended to provide design direction for the single phase nominal 120 VAC as it interfaces within the truck 12 VDC battery and electrical architecture providing power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off.
Truck and Bus Electrical Systems Committee
The effectiveness of the negative suspension structure (NSS) in isolating the driver’s seat vibrations has been demonstrated based on the seat’s model or vehicle’s one-dimensional dynamic model. To fully assess the effectiveness and stability of the seat’s NSS (S-NSS) on different models of vehicles, the three-dimensional models of the vibratory rollers (VR), heavy trucks (HT), and passenger cars (PC) have been built to assess the effectiveness of S-NSS compared to the seat’s passive suspension (S-PC) and seat’s control suspension (S-CS). The effectiveness of S-NSS is then investigated under all operating conditions of vehicles. The investigation results indicate that under a same simulation condition, S-NSS improves the ride comfort and health of the driver better than both S-PS and S-CS on all VR, HT, and PC. However, the effectiveness of S-NSS on PC is lower than on both VR and HT while the effectiveness of S-CS on PC is better than on both VR and HT. Besides, the effectiveness of S
Su, BeibeiWang, QiangSong, Fengxiang
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
Drivetrain Standards Committee
This specification provides dimensional standards for crimp type contact wire barrel design and is a replacement for MS3190. Some wire barrel designs may exist in AS39029 but are not considered approved for future use, therefore, will not appear in this specification. The crimp barrel sizes listed in this document have been standardized in AS39029 and AS22520 specifications, tools and contacts are available to support these listed sizes. These crimp barrel requirements shall be used for any contact, regardless of whether it is a standard or non-standard contact configuration. The specification lists details for three types of wire barrels: A, B, and C. Wire barrel type A is not recommended for new design. Table 4 lists each AS39029 detail sheet wire barrel type.
AE-8C1 Connectors Committee