Search
Advanced Search
of the following are true

Results

Items (206,833)
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level at source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This specification covers procedures for identifying wrought products of titanium and titanium alloys
AMS G Titanium and Refractory Metals Committee
This SAE Aerospace Information Report (AIR) is intended to be used as a process verification guide for evaluating implementation of key factors in repair of metal bond parts or assemblies in a repair shop environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair and is intended to promote consistency and reliability
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification covers an acrylonitrile-butadiene (NBR) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS-P-83461 specification or the MIL-PRF-25732 specification
AMS CE Elastomers Committee
AS8049A currently requires adjustable features on aircraft seats to be designed so they can be returned to the positions required for taxi, takeoff and landing by the occupant without the release of the occupant restraints. This ARD will demonstrate Aviation Industry support for revisions to TSO-C39c and TSO-C127a to allow Technical Standard Order (TSO) approval of aircraft seat products designed with adjustable features that require the release of occupant restraints to return the feature to the taxi, takeoff and landing position
null, null
The aviation, space, and defense industries rely on the development and manufacture of complex products comprised of multiple systems, subsystems, and components each designed by individual designers (design activities) at various levels within the supply chain. Each design or manufacturing activity controls various aspects of the configuration and specifications related to the product. When a change to design or process is requested or required, the change is typically required to be evaluated against the impacts to the entire system. Proposed changes to design data/information that the design activity identifies to be minor and have no effect on the product requirements or specifications, have the potential to be implemented and approved, where authorized to do so, but requires notification. Changes that affect customer mandated requirements or specifications shall be approved prior to implementation. In many cases, the design activity is not conducted by the DAH or design authority
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This specification covers steel cleanliness requirements in metric (SI) units for premium aircraft-quality ferromagnetic steels, other than hardenable, corrosion-resistant steels, by magnetic particle inspection methods
AMS E Carbon and Low Alloy Steels Committee
This specification provides requirements and procedures for air-pressure leak testing of parts
AMS B Finishes Processes and Fluids Committee
This specification provides requirements and procedures for hydraulic-pressure leak testing of parts
AMS B Finishes Processes and Fluids Committee
This specification provides requirements and procedures for hydraulic-pressure leak testing of parts. AMS 2625 is the inch/pound version of this MAM
AMS B Finishes Processes and Fluids Committee
This specification covers established metric manufacturing tolerances applicable to copper and copper alloy sheet, strip, and plate ordered to metric dimensions. These tolerances apply to all conditions, unless otherwise noted
AMS D Nonferrous Alloys Committee
This specification covers a nickel alloy in the form of wire, rod, strip, foil, and powder and a viscous mixture (paste) of the powder in a suitable binder and procured in metric units. AMS 4778 is the inch/pound version of this MAM. This filler metal has been used typically for joining corrosion and heat resistant steels and alloys requiring corrosion and oxidation resistant joints with good strength at elevated temperatures, but usage is not limited to such applications. Also may be used as a corrosion and oxidation resistant hard coating
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of hand forgings and rolled rings procured to metric (SI) dimensions. These products have been used typically for complex shaped parts requiring moderate strength and good forgeability of the alloy and where stability is required during machining, but usage is not limited to such applications. Corrosion resistance of this alloy is superior to that of aluminum alloys having copper as the principal alloying element
AMS D Nonferrous Alloys Committee
This specification covers a corrosion and heat resistant nickel alloy in the form of sheet, strip, and plate procured in SI (metric) units. AMS 5599, specified in inch/pound version of this MAM. These products have been used typically for parts requiring corrosion and oxidation resistance up to 1095 degrees C, particularly where such parts may require welding during fabrication, but usage is not limited to such applications
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock procured in SI (Metric) units. AMS 6415 is the inch/pound version of this MAM. These products have been used typically for parts, 90 millimeters and under in nominal thickness at time of heat treatment, requiring a through-hardening steel capable of developing a minimum hardness of 40 HRC when properly hardened and tempered and also for parts of greater thickness but requiring proportionately lower hardness, but usage is not limited to such applications. Certain design and processing procedures may cause these products to become susceptible to stress-corrosion cracking after heat treatment; ARP 1110 recommends practices to minimize such conditions
AMS E Carbon and Low Alloy Steels Committee
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training
G-12T Training and Quality Programs Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) defines the nomenclature for surface finishes commonly used for sheet and strip in aerospace material specifications. It is applicable to steel and to iron, nickel, cobalt, and titanium base alloys
AMS F Corrosion and Heat Resistant Alloys Committee
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and performance attributes associated with the chemical properties of the oil. Physical properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. These attributes are also associated with surface initiated fatigue (micropitting). To assure performance and to provide required information for engineering design, methodology for at least five oil properties are being studied: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity. The pressure-viscosity coefficient can be measured either directly by assessing viscosity as a function of pressure using
E-34 Propulsion Lubricants Committee
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification
E-34 Propulsion Lubricants Committee
The intent is to provide a reference which explains the types of possible changes to AS5780 products and provide appropriate context to the QPG. All product change requests to the QPG will be evaluated on their merits recognizing the content of this AIR is guidance only
E-34 Propulsion Lubricants Committee
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 5.00 mg
E-34 Propulsion Lubricants Committee
Employing ‘ball-on-cylinder’ philosophy, a non-rotating steel ball is held in a vertically mounted chuck and using an applied load is forced against an axially mounted steel cylinder. The test cylinder is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the cylinder in a wet condition and continuously transports a lubricating film of test fluid to the ball and cylinder interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used, by adjusting the operating conditions, to reproduce two different wear mechanisms; mild and severe wear, the ALTE therefore has the ability to assess a lubricant’s performance in that regard. These mechanisms are described below
E-34 Propulsion Lubricants Committee
This specification covers an aluminum alloy in the form of sheet procured in metric units. Primarily for parts requiring a high degree of formability (superplasticity) and response to heat treatment
AMS D Nonferrous Alloys Committee
This specification covers a corrosion and heat resistant nickel alloy in the form of sheet, strip, and plate procured in SI (metric) units. AMS 5598 is the inch/pound version of this MAM
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers steel cleanliness requirements in SI (Metric) units for aircraft-quality, ferromagnetic, hardenable, corrosion-resistant steels as determined by magnetic particle inspection methods. This specification contains sampling, specimen preparation, and inspection procedures and cleanliness rating criteria
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a water resistant lubricant in the form of grease procured in metric units
AMS M Aerospace Greases Committee
This SAE recommended practice provides procedures and methods for testing service, spring applied parking and combination brake actuators for air disc brake applications. Methods and recommended samples for testing durability, function and environmental performance are listed in 1.1 and 1.2
Truck and Bus Brake Actuator Committee
This SAE Aerospace Recommended Practice (ARP) addresses the general procedure for the best practices for minimizing uncertainty when calibrating thermal conductivity and cold cathode vacuum gauges, which includes the vacuum sensor(s) and accompanying electronics necessary for a pressure measurement to be made. It also includes the best practices for an in-process verification where limitations make it impossible to follow the best practices for minimizing uncertainty. Verifying the accuracy and operation of vacuum gauges is critical to ensure the maintenance of processes while under vacuum
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate 0.005 to 1.000 inches (0.13 to 25.40 mm) in nominal thickness in the solution heat-treated condition
AMS F Corrosion and Heat Resistant Alloys Committee
The devices of this SAE Standard provide the means by which passenger compartment dimensions can be obtained using a deflected seat rather than a free seat contour as a reference for defining seating space. All definitions and dimensions used in conjunction with this document are described in SAE J1100. These devices are intended only to apply to the driver side or center occupant seating spaces and are not to be construed as instruments which measure or indicate occupant capabilities or comfort. This document covers only one H-point machine installed on a seat during each test. Certified H-point templates and machines can be purchased from: SAE International 400 Commonwealth Drive Warrendale, PA 15096-0001 Specific procedures are included in Appendix A for seat measurements in short- and long-coupled vehicles and in Appendix B for measurement of the driver seat cushion angle. Specifications and a calibration inspection procedure for the H-point machine are given in Appendix C
Human Accom and Design Devices Stds Comm
This specification establishes the requirements for a hard anodic coating on aluminum and aluminum alloys
AMS B Finishes Processes and Fluids Committee
This SAE Systems Management Standard specifies the Habitability processes throughout planning, design, development, test, production, use and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring of this standard may be applied. Appendix C provides guidance on tailoring standard requirements to fit the various DoD acquisition pathways. The primary goals of a contractor Habitability program include: Ensuring that the system design complies with the customer Habitability requirements and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, prioritizing, and resolving Habitability risks and issues and ensuring that they are: ◦ Reflected in the contractor proposal, budgets, and plans. ◦ Raised at design, management, and program reviews. ◦ Debated in working group meetings. ◦ Coordinated with Training, logistics, and the other HSI disciplines. ◦ Included appropriately in documentation and deliverable
G-45 Human Systems Integration
This test method provides procedures for exposing specimens of elastomer materials (AS 568-214 size O-rings) representative of those used in gas turbine engines to lubricants or reference fluids under defined time and temperature conditions. This test includes both suspended and compressed O-rings. Resultant changes in the O-ring’s physical properties (tensile strength, elongation, hardness, mass, volume, and compression set) are measured to determine the amount of deterioration of the elastomer
E-34 Propulsion Lubricants Committee
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils
E-34 Propulsion Lubricants Committee
This specification covers a neopentyl polyol ester fluid (see 8.2) with AS5780 HPC or MIL-PRF-23699 HTS Class performance
E-34 Propulsion Lubricants Committee
The test method describes the procedure for determination of the total acid number (TAN) of new and degraded polyol ester and diester-based gas turbine lubricants by the potentiometric titration technique. The method was validated to cover an acidity range of 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricants
E-34 Propulsion Lubricants Committee
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008–2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable
E-34 Propulsion Lubricants Committee
The document is a recommended guide for evaluating new or replacement test methods. It considers applicability, suitability, accessibility, and return on effort. Particular emphasis should be placed on completing the “strategy definition” portion of this document (Stage 2), to capture all relevant process stages and complete in a recognizable order for any specific development project. The overall process should: 1 address the rationale behind testing; 2 result in a thorough review of whether a test is fit for purpose; 3 act as a pathway for vetting if a test should be added to AS5780. If, in any project, this process is not an exact fit, users should feel free to adjust, as necessary. The process provides the following stages
E-34 Propulsion Lubricants Committee
The high-temperature deposition test (HTDT) method is designed to evaluate the deposition and degradation characteristics of turbine lubricants when stressed under mixed-phase flow conditions found in certain parts of aviation gas turbine engines. This method is applicable to lubricants that form deposits in the range of 0.1 to 100 mg during the course of a test
E-34 Propulsion Lubricants Committee
To present methods which, according to the consensus of the aviation propulsion community represented by SAE Committee E-34, allow the continued assessment of load carrying capacity of current chemistry products during periods of limited or nonavailability of previously used standardized methods
E-34 Propulsion Lubricants Committee
This specification covers a corrosion and heat resistant steel in the form of welding wire. AMS 5822 is the inch/pound version of this MAM. This product has been used typically as bare filler metal for gas-metal-arc or gas-tungsten-arc welding of steels of similar composition, but usage is not limited to such applications
AMS F Corrosion and Heat Resistant Alloys Committee
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted
Hybrid - EV Committee
Items per page:
1 – 50 of 206833