Non-Isentropic Analysis of Varying Area Flow in Engine Ducting

932399

09/01/1993

Event
International Off-Highway & Powerplant Congress & Exposition
Authors Abstract
Content
In two previous papers to this Society (1, 2)* an ‘alternative’ method was presented for the prediction of the unsteady gas flow behaviour through a reciprocating internal combustion engine. The computational procedures led further to the prediction of the overall performance characteristics of the power unit, be it operating on a two- or a four-stroke cycle. Correlation with measurements was given to illustrate its effectiveness and accuracy.
In the ducts of such engines there are inevitably sectional changes of area which are either gradual or sudden. A tapered pipe is typical of a gradual area change whereas a throttle or a turbocharger nozzle represents a sudden area change. In those previous papers it was indicated that a fuller explanation, of the theoretical procedures required to predict accurately the unsteady gas flow in such duct sections would be given in a later paper to this Society; this is that necessary publication.
The theory of gradual and sudden area changes is presented, together with computational illustrations of its application to real geometrical cases. The theory includes non-isentropic effects at such area changes and inherently solves the mass continuity, energy and momentum equations at each section.
Meta TagsDetails
DOI
https://doi.org/10.4271/932399
Pages
20
Citation
Blair, G., and Magee, S., "Non-Isentropic Analysis of Varying Area Flow in Engine Ducting," SAE Technical Paper 932399, 1993, https://doi.org/10.4271/932399.
Additional Details
Publisher
Published
Sep 1, 1993
Product Code
932399
Content Type
Technical Paper
Language
English