A Low Order Model of SCR-in-DPF Systems with Proper Orthogonal Decomposition

2018-01-0953

04/03/2018

Features
Event
WCX World Congress Experience
Authors Abstract
Content
This paper presents a method to achieve a low order system model of the urea-based SCR catalyst coated filter (SCR-in-DPF or SCRF or SDPF), while preserving a high degree of fidelity. Proper orthogonal decomposition (POD), also known as principal component analysis (PCA), or Karhunen-Loéve decomposition (KLD), is a statistical method which achieves model order reduction by extracting the dominant characteristic modes of the system and devises a low-dimensional approximation on that basis. The motivation for using the POD approach is that the low-order model directly derives from the high-fidelity model (or experimental data) thereby retains the physics of the system. POD, with Galerkin projection, is applied to the 1D + 1D SCR-in-DPF model using ammonia surface coverage and wall temperature as the dominant system states to achieve model order reduction. The performance of the low-order POD model (with only a few basis modes) shows good agreement with the high fidelity model in steady and transient states analyses. This shows the promise of the application of POD in exhaust after-treatment system (EATS) modelling to achieve high fidelity low order models. In addition system control design is easier for the reduced order model using a modern approach. We demonstrate the performance of a model-based controller applied to the low-order POD model to minimize ammonia slip for a transient test cycle.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-0953
Pages
14
Citation
Olowojebutu, S., and Steffen, T., "A Low Order Model of SCR-in-DPF Systems with Proper Orthogonal Decomposition," SAE Technical Paper 2018-01-0953, 2018, https://doi.org/10.4271/2018-01-0953.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-0953
Content Type
Technical Paper
Language
English