Frontal, Lateral, and Free-Operation Impacts of Amusement Bumper Cars: Vehicle Kinematics and Occupant Kinematics

2018-01-0543

04/03/2018

Features
Event
WCX World Congress Experience
Authors Abstract
Content
This study conducted a series of rear-impact, side-impact, barrier, and free-operation collisions using a bumper car ride at an active amusement park. Two conditions were studied: staged and free operation. Each staged test included a bullet (impacting) vehicle operated by a rider and a target (impacted) static vehicle or structure. Impact configurations of frontal collisions of the bullet vehicle into the rear and side of a target vehicle were consistent with the existing literature. The free operation condition involved collisions which were not pre-determined, and operators may not have been prepared for collision timing, magnitude, and direction. Results demonstrated high repeatability for vehicle parameters, such as impact velocity, change in velocity, and peak acceleration. Peak changes in velocity during vehicle-to-vehicle collisions were 2.2-2.5 m/s (8-8.9 km/hr; 5-5.5 mph) for the target vehicle and 1.6-1.8 m/s (5.6-6.4 km/hr; 3.5-4 mph) for the bullet vehicle, while those during vehicle-to-retaining barrier collisions were approximately 3.6 m/s (13 km/hr; 8 mph). Coefficients of restitution and overall vehicle and occupant kinematics were similar to prior bumper car studies, and collision magnitudes were similar in the free-operation test to the staged, single-axis collisions. Bumper cars present a model environment to study vehicle and occupant kinematics in vehicle collisions that are within human tolerance and include aware but possibly unprepared occupants. This is relevant to establishing occupant kinematics in and limits to autonomous vehicle emergency handling maneuvers.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-0543
Pages
16
Citation
Bussone, W., Moore, T., Locey, C., and Cargill, R., "Frontal, Lateral, and Free-Operation Impacts of Amusement Bumper Cars: Vehicle Kinematics and Occupant Kinematics," SAE Technical Paper 2018-01-0543, 2018, https://doi.org/10.4271/2018-01-0543.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-0543
Content Type
Technical Paper
Language
English