Tumble Vortex Characterization by Complex Moments

2018-01-0207

04/03/2018

Features
Event
WCX World Congress Experience
Authors Abstract
Content
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern. The introduction of complex moments as an organizing framework for vortex identification and characterization, therefore, constitutes the major contribution of this paper. The analysis tool is applied to a set of in-cylinder flow fields obtained by high-speed particle image velocimetry at mid-intake stroke in the middle tumble plane of a research optical engine. The cycle-to-cycle variations of the large-scale tumble flow pattern characteristics - in location, strength, and orientation - are quantified and discussed.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-0207
Pages
15
Citation
Liu, Z., Teh, K., Ge, P., Zhao, F. et al., "Tumble Vortex Characterization by Complex Moments," SAE Technical Paper 2018-01-0207, 2018, https://doi.org/10.4271/2018-01-0207.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-0207
Content Type
Technical Paper
Language
English