Fundamental Understanding of Antiwear Mechanisms in Real-World Applications: Part 2

Features
Authors Abstract
Content
The global commitment to reduce CO2 emissions drives the automotive industry to create ever more advanced chemical and engineering systems. Better vehicle fuel efficiency is demanded which forces the rapid evolution of the internal combustion engine and its system components. Advancing engine and emission system technology places increasingly complex demands on the lubricant. Additive system development is required to formulate products capable of surpassing these demands and enabling further reductions in greenhouse gas emissions. This paper reports a novel method of generating fundamental structure-performance knowledge with real-world meaning. Traditional antiwear molecule performance mechanisms are explored and compared with the next generation of surface active additive system (SAAS) formulated with only Nitrogen, Oxygen, Carbon and Hydrogen (NOCH). Results of experiments run with the advanced antiwear NOCH SAAS show significant improvements over traditional fully-formulated lubricants through a mechanism that deviates from that of conventional antiwear molecules.
Meta TagsDetails
DOI
https://doi.org/10.4271/2017-01-9382
Pages
6
Citation
Smith, O., Nguyen, N., Delbridge, E., Burrington, J. et al., "Fundamental Understanding of Antiwear Mechanisms in Real-World Applications: Part 2,"https://doi.org/10.4271/2017-01-9382.
Additional Details
Publisher
Published
Aug 25, 2017
Product Code
2017-01-9382
Content Type
Journal Article
Language
English